Home
Class 12
MATHS
If x^(2)+y^(2)=1, then a)yy''+(y')^(2)+1...

If `x^(2)+y^(2)=1`, then a)`yy''+(y')^(2)+1=0` b)`yy''+2(y')^(2)+1=0` c)`yy''-2(y')^(2)+1=0` d)`yy''+(y')^(2)-1=0`

A

`yy''+(y')^(2)+1=0`

B

`yy''+2(y')^(2)+1=0`

C

`yy''-2(y')^(2)+1=0`

D

`yy''+(y')^(2)-1=0`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If xe^(xy) + ye^(-xy) = sin ^(2) x , then (dy)/(dx) at x =0 is a) 2y^(2) -1 b) 2y c) y^(2) -y d) y^(2) -1

If x^yy^x=16 , then find dy/dx at (2,2).

The focus of the parabola y^(2) + 6x - 2y + 13 = 0 is at the point a) ((7)/(2), 1) b) ((-1)/(2),1) c) (-2,(1)/(2)) d) (-(7)/(2),1)

If y= (1)/( 1+ x+x^2) , then (dy)/(dx) is equal to a) y^(2) (1+ 2x) b) (-1 +2x)/( y^2) c) (1+2x)/(y^2) d) -y^(2) (1+2x)

The locus of the middle point of the chord of the circle x ^(2) + y ^(2) = a ^(2) such that the chords passes through a given point (x _(1) , y _(1)), is : a) x ^(2) + y ^(2) - x x _(1) - y y _(1) =0 b) x ^(2) + y ^(2) = x _(1) ^(2) + y _(1) ^(2) c) x + y = x _(2) + y _(1) d) x + y = x _(1) ^(2) + y _(1) ^(2)

The solution of the differential equation x (dy)/(dx) + y = (1)/(x^(2)) at (1, 2) is a) x^(2)y + 1 = 3x b) x^(2)y + 1 = 0 c) xy + 1 = 3x d) x^(2) (y + 1) = 3x

The equation of the sphere whose centre is (6, -1, 2) and which touches the plane 2x-y+2z-2=0 , is :a) x^(2)+y^(2)+z^(2)-12x+12y-4z-16=0 b) x^(2)+y^(2)+z^(2)-12x+2y-4z=0 c) x^(2)+y^(2)+z^(2)-12x+2y-4z+16=0 d) x^(2)+y^(2)+z^(2)-12x+2y-4z+6=0

The solution of 2 (y + 3) - x y(dy)/(dx) = 0 with y =-2, when x =1 is :a) (y + 3) = x ^(2) b) x ^(2) (y + 3) = 1 c) x ^(4) (y + 3) = 1 d) x ^(2) ( y +3) ^(2) = e ^(y +2)

If (x_(1)-x_(2))^(2) + (y_(1)-y_(2))^(2)=a^(2) , (x_(2)-x_(3))^(2) + (y_(2) - y_(3))^(2)=b^(2) , (x_(3)-x_(1))^(2) + (y_(3) - y_(1))^(2) = c^(2) and k[|(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1)|]^2=(a+b+c)(b+c-a)(c+a-b)(a+b-c) then the value of k a)1 b)2 c)4 d)none of these