Home
Class 12
MATHS
If f(z)=(1-z^(3))/(1-z), where z=x+iy wi...

If `f(z)=(1-z^(3))/(1-z)`, where `z=x+iy` with `zne1`, then `Re bar({f(z)})=0` reduces to

A

`x^(2)+y^(2)+x+1=0`

B

`x^(2)-y^(2)+x-1=0`

C

`x^(2)-y^(2)-x+1=0`

D

`x^(2)-y^(2)+x+1=0`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If iz^(3)+z^(2)-z+i=0 , where i= sqrt-1 then |z| is equal to

If (z-i)/(z+i) (z ne -i) is a purely imaginary number, then z. bar(z) is equal to

If z ^(2) + z + 1 = 0, where z is a complex number, then the value of (z + (1)/(z)) ^(2) + (z ^(2) + (1)/( z ^(2))) ^(2) + (z ^(3) + (1)/(z ^(3))) ^(2) +...( z ^(6) + (1)/(z ^(6)) )^(2) is

If (w- bar(w)z)/(1-z) is purely real where w= alpha + ibeta, beta ne 0 and z ne 1 , then the set of the values of z is

If |z-2|= "min" {|z-1|, |z-5|} , where z is a complex number, then

If |z| =5 and w= (z-5)/(z+5) the the Re (w) is equal to

If Im ((2z+1)/(iz+1))=3 , then locus of z is

If z= r (cos theta + i sin theta) , then the value of (z)/(bar(z)) + (bar(z))/(z) is