Home
Class 12
MATHS
If C(0),C(1),C(2),...,C(15) are binomial...

If `C_(0),C_(1),C_(2),...,C_(15)` are binomial coefficients in `(1+x)^(15)`, then `C_(1)/(C_(0))+2C_(2)/(C_(1))+3C_(3)/(C_(2))+...+15C_(15)/(C_(14))` is equal to

A

60

B

120

C

64

D

124

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Let c_r denote the binomial coefficient "^nC_r Hence, show that C_1/C_0+2C_2/C_1+3.C_3/C_2+...+n.C_n/C_(n-1)=(n(n+1))/2

Find the sum 3^(n)C_(0)-8^(n)C_(1)+13^(n)C_(2)-18 xx ^(n)C_(3)+…

If ""^(18)C_(15)+2(""^(18)C_16))+""^(17)C_(16)+1=""^(n)C_(3) , then n is equal to :

Given that C_r/(C_(r-1))=(n-r+1)/r Evaluate C_1/C_0,C_2/C_1 and C_3/C_2