Home
Class 12
MATHS
2"tan"^(-1)(1/(3))+"tan"^(-1)(1/(4)) is ...

`2"tan"^(-1)(1/(3))+"tan"^(-1)(1/(4))` is equal to

A

`"tan"^(-1)(16/(13))`

B

`"tan"^(-1)(17/(23))`

C

`pi/(4)`

D

0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of x satisfying the equation tan^(-1)x + tan^(-1)((2)/(3)) = tan^(-1)((7)/(4)) is equal to

The value of tan^(-1) ((7)/(4))- tan^(-1) ((3)/(11)) is equal to

The value of sin^(-1)((4)/(5)) + 2 tan^(-1)((1)/(3)) is equal to

sin(tan^-1(1)) is equal to

tan ( 2 tan^(-1) ((2)/(5))) is equal to

tan [ 3 tan^(-1) ((1)/(5)) - (pi)/(4) ] is equal to

intx^(3)d(tan^(-1)x) is equal to

The value of tan^(-1)((sqrt(3))/(2))+tan^(-1)((1)/(sqrt(3))) is equal to a) tan^(-1)((5)/(sqrt(3))) b) tan^(-1)((2)/(sqrt(3))) c) tan^(-1)((1)/(2)) d) tan^(-1)((1)/(3sqrt(3)))

int_(0)^(1)1/((x^(2)+16)(x^(2)+25))dx is equal to a) 1/(5)[1/(4)"tan"^(-1)(1/(4))-1/(5)"tan"^(-1)(1/(5))] b) 1/(9)[1/(4)"tan"^(-1)(1/(4))-1/(5)"tan"^(-1)(1/(5))] c) 1/(4)[1/(4)"tan"^(-1)(1/(4))-1/(5)"tan"^(-1)(1/(5))] d) 1/(9)[1/(5)"tan"^(-1)(1/(4))-1/(4)"tan"^(-1)(1/(5))]