Home
Class 12
MATHS
The distance between the directrices of ...

The distance between the directrices of the hyperbola `x^(2)-y^(2)=9` is a)`9/(sqrt(2))`b)`5/(sqrt(3))` c)`3/(sqrt(2))` d)`3sqrt(2)`

A

`9/(sqrt(2))`

B

`5/(sqrt(3))`

C

`3/(sqrt(2))`

D

`3sqrt(2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The eccentricity of the hyperbola x ^(2) - y ^(2) = 4 is :a) sqrt3 b) 2 c) 1.5 d) sqrt2

int_(0)^(2)[x^(2)]dx is :a) 2-sqrt(2) b) 2+sqrt(2) c) sqrt(2)-1 d) -sqrt(2)-sqrt(3)+5

The shortest distance from the point (1,2,-1) to the surface of the sphere x^(2)+y^(2)+z^(2)=54 is a) 3sqrt(6) b) 2sqrt(6) c) sqrt(6) d)2

The eccentricity of the hyperbola 4x^(2) - y^(2) - 8x - 8y - 28 =0 is a)3 b) sqrt5 c) 2 d) sqrt7

The eccentricity of the conic ((x+2)^(2))/(7)+(y-1)^(2)=14 is a) sqrt((7)/(8)) b) sqrt((6)/(17)) c) sqrt(3)/(2) d) sqrt((6)/(7))

The value of "sin"(31)/(3)pi is a) (sqrt3)/(2) b) (1)/(sqrt2) c) (-sqrt3)/(2) d) (-1)/(sqrt2)

The area bounded by the curves y = - x^(2) + 3 and y = 0 is a) sqrt(3)+1 b) sqrt(3) c) 4sqrt(3) d) 5sqrt(3)

The point on the circle (x-1)^(2)+(y-1)^(2)=1 which is nearest to the circle (x-5)^(2)+(y-5)^(2)=4 , is a)(2, 2) b) (3/(2),3/(2)) c) ((sqrt(2)+1)/(sqrt(2)),(sqrt(2)+1)/(sqrt(2))) d) (sqrt(2),sqrt(2))

The foci of the ellipse 4x^(2) + 9y^(2) = 1 are a) (pm(sqrt(3))/(2),0) b) (pm(sqrt(5))/(2),0) c) (pm(sqrt(5))/(3),0) d) (pm(sqrt(5))/(6),0)

If f(x)=cos(tan^(-1)x) , then the value of the intgral int_(0)^(1)xf''(x)dx is a) (3-sqrt(2))/(2) b) (3+sqrt(2))/(2) c)1 d) 1-(3)/(2sqrt(2))