Home
Class 12
MATHS
If f(x) = ((x)/(2))^(10), then f(1) + (f...

If `f(x) = ((x)/(2))^(10)`, then `f(1) + (f'(1))/(1!) + (f''(1))/(2!) + …….(f^((10))(1))/(10!)` is equal to

A

1

B

10

C

11

D

512

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If f (x) = (x +2)/( 3x -1) , then f {f (x) } is

If f(x) = log [(1+x)/(1-x)] , the prove that f[(2x)/(1+x^2)] =2f(x)

If f(x) = (sin^(-1)x)/(sqrt(1-x^(2))) , then the value of (1-x^(2))f'(x) - x f(x) is

If f(x)=x+1 and g(x)=2x , then f{g(x)} is equal to

If f(x)=int_(1)^(x)(logt)/(1+t+t^(2))dt,AAxge1 then f(x) a) f(1/x) b) f((1)/(x^(2))) c) f(x^(2)) d) -f(1/x)