Home
Class 12
MATHS
If f'(4) = 5, g'(4) = 12, f(4) g(4) = 2 ...

If `f'(4) = 5, g'(4) = 12, f(4) g(4) = 2` and g(4) = 6, then `((f)/(g)) (4)` is a)`(5)/(36)` b)`(11)/(18)` c)`(23)/(36)` d)`(13)/(18)`

A

`(5)/(36)`

B

`(11)/(18)`

C

`(23)/(36)`

D

`(13)/(18)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Find f o g and g o f f(x) = |x| and g(x) = |5x -2|

If int_(-1)^(4) f(x) dx=4 and int_(2)^(4) (3-f(x))dx=7 , then int_(-1)^(2) f(x)dx is a)1 b)2 c)3 d)5

If f(x)=ax+b and g(x)=cx+d , then f[g(x)]-g[f(x)] is equivalent to a) f(a)-g(c) b) f(c)+g(a) c) f(d)+g(b) d) f(d)-g(b)

If f(x)=x^(2)+4x-5andA=[(1,2),(4,-3)] , then f(A) is equal to a) [(0,-4),(8,8)] b) [(2,1),(2,0)] c) [(1,1),(1,0)] d) [(8,4),(8,0)]

Let , f (x) = x ^(2) + bx + 7 . If f ' (5) = 2f ' ((7)/(2)), then the value of b is a)4 b)3 c)-4 d)-3

The derivative of f(tanx) wrt g(secx) at x=pi//4 , where f'(1)=2 and g'(sqrt(2))=4 is a) (1)/(sqrt(2)) b) sqrt(2) c)1 d)2

If f(x)=x^2+x-1 and g(x)=4 x-7 . be real functions then find: i) (f+g)(2) ii) (f-g)(7) (iii) (fg) (- 5 ) iv) (f/g)(4)

Let f and g be differentiable functions such that f(3) = 5, g(3) = 7, f'(3) = 13, g'(3) = 6, f'(7) = 2 and g'(7) = 0 . If h(x) = (fog)(x) , then h'(3) =