Home
Class 12
MATHS
If s = sec^(-1) ((1)/(2x^(2) - 1)) and t...

If `s = sec^(-1) ((1)/(2x^(2) - 1))` and `t = sqrt(1 - x^(2))`,
then `(ds)/(d t)` at `x = (1)/(2)` is

A

1

B

2

C

`-2`

D

4

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If x = sin^(-1) (3t - 4t^(3)) and y = cos^(-1) (sqrt(1 - t^(2))) , then (dy)/(dx) is equal to a) (1)/(2) b) (2)/(3) c) (1)/(3) d) (2)/(5)

If u = tan^(-1) (( sqrt(1- x^(2) ) - 1)/( x) ) and v = sin^(-1) x , then (du)/(dv) is equal to a) sqrt( 1- x^2) b) - (1)/(2) c)1 d)-x

If y = sin ^(-1) (2x sqrt (1- x ^(2))), - (1)/( sqrt2) le x le (1)/( sqrt2) , then (dy)/(dx) is equal to a) (x)/( sqrt (1- x ^(2))) b) (1)/( sqrt(1- x ^(2))) c) (2)/( sqrt (1 - x ^(2))) d) (2x)/( sqrt (1- x ^(2)))

If x = ( 2 t)/( 1 + t^(2)), y = (1 - t^(2))/( 1 + t ^(2)) then find ( dy)/( dx) at t = 2

If y = sin^(2) cot^(-1) sqrt((1+x)/(1-x)) , then (dy)/(dx) is equal to a)2 sin 2x b)sin 2x c) (1)/(2) d) -(1)/(2)

Derivative of sec^(-1)(1/(1-2x^(2))) w.r.t. sin^(-1)(3x-4x^(3)) is :