Home
Class 12
MATHS
int (sec x)^(m) (tan^(3)x + tan x) dx is...

`int (sec x)^(m) (tan^(3)x + tan x) dx` is equal to

A

`sec^(m+2) x + C`

B

`tan^(m+2)x + C`

C

`(sec^(m+2)x)/(m + 2)+C`

D

`(tan^(m+2)x)/(m+2) + C`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

intx^(3)d(tan^(-1)x) is equal to

int(x^(3))/(x+1)dx is equal to

If y="sec"("tan"^(-1)x) , then (dy)/(dx) is equal to

If int_(0)^(1)cot^(-1)(1-x+x^(2))dx=lamdaint_(0)^(1)tan^(-1)xdx then 'lamda' is equal to

int_(0) ^(pi//2) (dx)/( 1 + tan^(3) x) is equal to a)1 b) pi c) pi/2 d) pi/4

Let y = tan^(-1) (sec x + tan x) . Then , (dy)/(dx) is equal to

If y = cot^(-1) ("tan" (x)/(2)) , then (dy)/(dx) is equal to

int(x^(5))/(sqrt(1+x^(3)))dx is equal to

int(x^(2))/(1+(x^(3))^(2) dx is equal to