Home
Class 12
MATHS
The principal argument of the complex nu...

The principal argument of the complex number `z = (1+ sin""(pi)/(3) + icos""(pi)/(3))/(1+sin""(pi)/(3) - i cos ""(pi)/(3))` is

A

`(pi)/(3)`

B

`(pi)/(6)`

C

`(2pi)/(3)`

D

`(pi)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The argument of the complex number "sin"(6pi)/(5)+ i(1+"cos" (6pi)/(5)) is

The complex number sqrt2 [ sin "" (pi)/(8) + i cos ""(pi)/(8) ] ^(6) represents

The argument of the complex number ((i)/(2) - (2)/(i)) is equal to a) (pi)/(4) b) (3 pi)/(4) c) (pi)/(12) d) (pi)/(2)

Consider the complex number (i-1)/(cosfrac(pi)(3)+isinfrac(pi)(3) express in a+ib form.

One of the value of ("cos"(pi)/(6) +i "sin"(pi)/(6))^((1)/(2)) + ("cos"(pi)/(6)- i "sin"(pi)/(6))^((11)/(2)) is

Consider the complex number (i-1)/(cosfrac(pi)(3)+isinfrac(pi)(3) Convert into polar form.

Prove that (1+"cos"(pi)/(8))(1+"cos"(3pi)/(8))(1+"cos"(5pi)/(8))(1+"cos"(7pi)/(8))=(1)/(8) .

If z= cos (pi)/(3) - i sin (pi)/(3) then z^(2)-z+1 is equal to

The value of the expression sin^(-1)(sin""(22pi)/7)+cos^(-1)(cos""(5pi)/3)+tan^(-1)(tan""(5pi)/7)+sin^(-1)(cos2) is a) (17pi)/42 -2 b) -2 c) (-pi)/21 - 2 d)None of these