Home
Class 12
MATHS
If z = (2-i)/(i), then R e(z^(2)) + I m(...

If `z = (2-i)/(i)`, then `R e(z^(2)) + I m(z^(2))` is equal to a)1 b)-1 c)2 d)-2

A

1

B

`-1`

C

2

D

`-2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If z_(1) and z_(2) are two non-zero complex numbers such that |z_(1) + z_(2)| = |z_(1)| + |z_(2)| , then arg ((z_(1))/(z_(2))) is equal to a)0 b) -pi c) -(pi)/(2) d) (pi)/(2)

If z= cos (pi)/(3) - i sin (pi)/(3) then z^(2)-z+1 is equal to

If z = ( 7-i)/(3-4i) , " then " z^(14) is equal to :

If z=(-1)/(2)+i(sqrt(3))/(2) , then 8+10z+7z^(2) is equal to a) -(1)/(2)-i(sqrt(3))/(2) b) (1)/(2)+isqrt(3)/(2) c) -(1)/(2)+i(3sqrt(3))/(2) d) (sqrt(3))/(2)i

If z_(1)=2+3i and z_(2)=3+2i , then |z_(1)+z_(2)| is equal to

If z=(1)/(z)=2 cos 60^(@) , then z^(1000)+(1)/(z^(1000))+1 is equal to

If the complex numbers z _(1) , z _(2) and z _(3) denote the vertices of an isosceles triangle, right angled at z _(1), then (z _(1) - z _(2)) ^(2) + (z _(1) - z _(3)) ^(2) is equal to A)0 B) (z _(2) + z _(3)) ^(2) C)2 D)3

If z= re^(i theta ) , " then " |e^(iz) | is equal to a)1 b) e^(2r) sin theta c) e^( r sin theta) d) e^(-r sin theta)

If z_1 and z_2 be complex numbers such that z_1 + i(bar(z_2) ) =0 and "arg" (bar(z_1) z_2 ) = (pi)/(3) . Then "arg"(bar(z_1)) is equal to a) (pi)/(3) b) pi c) (pi)/(2) d) (5pi)/(12)

Let z_(1)=(2sqrt(3)+i6sqrt(7))/(6sqrt(7)+i2sqrt(3))andz_(2)=(sqrt(11)+i3sqrt(13))/(3sqrt(13)-isqrt(11)) Then, |(1)/(z_(1))+(1)/(z_(2))| is equal to a)47 b)264 c) |z_(1)-z_(2)| d) |z_(1)+z_(2)|