Home
Class 12
MATHS
If |x-1|+|x-3| le 8, then the values of ...

If `|x-1|+|x-3| le 8`, then the values of x lie in the interval a)`(-oo, -2)` b)`[-2, 6]` c)`(-3, 7)` d)`(-2, oo)`

A

`(-oo, -2)`

B

`[-2, 6]`

C

`(-3, 7)`

D

`(-2, oo)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If the roots of the quadratic equation 3x^(2) + 2x + a^(2) - a = 0 in x are of opposite signs, then a lies in the interval a) (-oo, -2) b) (-oo, 0) c) (-1, 0) d) (0, 1)

Let f(x) = int e^(x) (x - 1) (x - 2)dx . Then f decreases in the interval a) (-oo, - 2) b) (-2, -1) c)(1, 2) d) (2, + oo)

If |2x - 3| lt |x + 5| , then x lies in the interval a)(-3, 5) b)(5, 9) c) (-(2)/(3), 8) d) (-8,(2)/(3))

Let f(x) = cos x - (1 - (x^(2))/(2)) then f(x) is increasing in the interval a) (-oo, 1] b) [0, oo) c) (-oo, -1] d) (-oo, oo)

If x satisfies the inequations 2x-7 lt 11 and 3x+4 lt- 5 , then x lies in the interval a) (-infty,3) b) (-infty,2) c) (-infty,-3) d) (-infty,infty)

The interval in which y=x^2e^(-x) is increasing is a) (0,2) b) (-2,0) c) (2,oo) d) (-oo,oo)

The function f (x) = 2x^(3) - 15 x ^(2) + 36 x + 6 is strictly decreasing in the interval a) (2,3) b) (-oo,2) c) (3,4) d) (-oo,3) uu(4,oo)

If f(x) = (t + 3x - x^(2))/(x - 4) , where t is a parameter for which f(x) has a minimum and maximum, then the range of values of t is a)(0, 4) b) (0, oo) c) (-oo, 4) d) (4, oo)

Let f(x) be a function such that f'(x) = log_(1//3) [log_(3) (sin x + a)] .If f(x) is decreasing for all real values of x, then a) a in (1, 4) b) a in (4, oo) c) a in (2, 3) d) a in (2, oo)