Home
Class 12
MATHS
The value of sin^(2)""(pi)/(8) + sin^(2)...

The value of `sin^(2)""(pi)/(8) + sin^(2)""(3pi)/(8) + sin^(2)""(5pi)/(8) + sin^(2) ""(7pi)/(8)` is equal to a)`(1)/(8)` b)`(1)/(4)` c)`(1)/(2)` d)2

A

`(1)/(8)`

B

`(1)/(4)`

C

`(1)/(2)`

D

2

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin^(4)""(pi)/(8)+sin^(4)""(3pi)/(8) is equal to

sin^-1[sin((7pi)/6)] is equal to --

Prove that "sin"^(2)(pi)/(18)+"sin"^(2)(pi)/(9)+"sin"^(2)(7pi)/(18)+"sin"^(2)(4pi)/(9)=2 .

sin ^(2) 5 ^(@) + sin ^(2) 10 ^(@) + sin^(2) 15 ^(@) + ... + sin ^(2) 90^(@) is equal to : a) 8 (1)/(2) b) 9 c) 9 (1)/(2) d) 4 (1)/(2)

Find the value of sin^(-1)sin((2pi)/3)

Prove that sin^2(pi/8)+sin^2((3pi)/8)+sin^2((5pi)/8)+sin^2((7pi)/8)=2

int(1)/(8 sin^(2)x + 1)dx is equal to

Find the value of sin^-1(sin((3pi)/4))

Prove that cos ^(4) (pi)/(8)+cos ^(4) (3 pi)/(8)+cos ^(4) (5 pi)/(8)+cos ^(4) (7 pi)/(8)=(3)/(2)