Home
Class 12
MATHS
The value of x satisfying the equation t...

The value of x satisfying the equation `tan^(-1)x + tan^(-1)((2)/(3)) = tan^(-1)((7)/(4))` is equal to

A

`(1)/(2)`

B

`-(1)/(2)`

C

`(3)/(2)`

D

`-(1)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

2"tan"^(-1)(1/(3))+"tan"^(-1)(1/(4)) is equal to

tan ( 2 tan^(-1) ((2)/(5))) is equal to

The value of tan^(-1) ((7)/(4))- tan^(-1) ((3)/(11)) is equal to

The solution set of the equation sin^(-1)x = 2 tan^(-1) x is

The value of sin^(-1)((4)/(5)) + 2 tan^(-1)((1)/(3)) is equal to

tan [ 3 tan^(-1) ((1)/(5)) - (pi)/(4) ] is equal to

If tan^(-1)x + tan^(-1)y = (2pi)/(3) , then cot^(-1) x + cot^(-1)y is equal to

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))=

Prove that 2 tan^(-1)(1/2) + tan^(-1)(1/7) = tan^(-1)(31/17)

Prove that tan ^(-1) (1/7)+tan ^(-1)( (1)/(13))=tan ^(-1)( 2/9)