Home
Class 12
MATHS
If tan A - tan B = x and cot B - cot A= ...

If tan A - tan B = x and cot B - cot A= y, then cot (A-B) is

A

`(1)/(x-y)`

B

`(1)/(x+y)`

C

`(1)/(x) + y`

D

`(1)/(x) + (1)/(y)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If tanA+tanB=a and cotA+cotB=b.Prove that cot(A+B)= (1/a)-(1/b)

In triangle ABC , tan A +tan B +tan C =6 and tan A tan B =2 , then the values of tan A , tan B , tan C are

If none of the angles x, y and (x+y) is a multiple of pi , then cot (x+y)=(cot x cot y-1)/(cot y+cot x)

If ab gt -1, bc gt -1 and ca gt -1 , then the value of cot^(-1) ((ab+1)/(a-b) ) + cot^(-1) ((bc+1)/(b-c) ) + cot^(-1) ((ca+1)/( c-a)) is a) -1 b) cot^(-1) "" (a+b+c) c) cot^(-1) ("abc") d)0

If tan ^(-1) x + 2 cot ^(-1) x = (pi)/(3), then the value of x is

Prove that cot x cot 2 x-cot 2 x cot 3 x-cot 3 x cot x=1

int( d x)/(sin ^(2) x cos ^(2) x) equals a) tan x+cot x+C b) tan x-cot x+C c) tan x cot x+C d) tan x-cot 2 x+C

If tan^(-1)x + tan^(-1)y = (2pi)/(3) , then cot^(-1) x + cot^(-1)y is equal to