Home
Class 12
MATHS
If tan^(-1)x + tan^(-1)y = (2pi)/(3), th...

If `tan^(-1)x + tan^(-1)y = (2pi)/(3)`, then `cot^(-1) x + cot^(-1)y` is equal to

A

`(pi)/(2)`

B

`(1)/(2)`

C

`(pi)/(3)`

D

`(sqrt(3))/(2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan ^(-1) x + 2 cot ^(-1) x = (pi)/(3), then the value of x is

The value of x satisfying the equation tan^(-1)x + tan^(-1)((2)/(3)) = tan^(-1)((7)/(4)) is equal to

If y = tan^(-1) x + sec^(-1) x + cot^(-1) x + "cosec"^(-1)x , then (dy)/(dx) is equal to

If tan^(-1)2x+tan^(-1)3x=(pi)/(2) , then the value of x is equal to a) (1)/(sqrt(6)) b) (1)/(6) c) (1)/(sqrt(3)) d) (1)/(sqrt(2))

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))=

If tan^(-1)(x+2)+tan^(-1)(x-2) - tan^(-1)((1)/(2)) = 0 , then one of the values of x is equal to

If y=tan^(-1)((4x)/(1+5x^(2)))+tan^(-1)((2+3x)/(3-2x)) , then (dy)/(dx) is equal to a) (5)/(1+25x^(2)) b) (1)/(1+25x^(2)) c)0 d) (5)/(1-25x^(2))

The value of sec ^(2) ( tan ^(-1) 3) + cosec ^(2) (cot ^(-1) 2) is equal to

If y = tan^(-1) ((2x-1)/(1+ x- x^2) ) , then (dy)/(dx) at x = 1 is equal to a) 1/2 b) 2/3 c) 1 d) 3/2

inte^(tan^(-1)x)(1+x+x^(2))*d(cot^(-1)x) is equal to