Home
Class 12
MATHS
The point of intersection of the straigh...

The point of intersection of the straight lines `r = (3hat(i) - 4hat(j) + 5hat(k)) + lambda(-hat(i) - 2hat(j) + 2hat(k))` and `(3-x)/(-1) = (y+4)/(2) = (z-5)/(7)` is

A

(-3, -4, -5)

B

(-3, 4, 5)

C

(-3, 4, -5)

D

(3, -4, 5)

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The straight line r = (hat(i) + hat(j) + hat(k)) + alpha (2hat(i) - hat(j) + 4hat(k)) meets the XY - plane at the point

The distance between the line vec(r) = (2hat(i) + 2hat(j) - hat(k)) + lambda(2hat(i) + hat(j) - 2hat(k)) and the plane vec(r).(hat(i) + 2hat(j) + 2hat(k)) = 10 is equal to

The point of intersection of the line vec(r)=7hat(i)+10hat(j)+13hat(k)+s(2hat(i)+3hat(j)+4hat(k)) and vec(r)=3hat(i)+5hat(j)+7hat(k)+t(hat(i)+2hat(j)+3hat(k)) is :

Find a vector of magnitude 6 and perpendicular to both vec(a) = 2hat(i) + 2hat(j) + hat(k) and vec(b) = hat(i) - 2hat(j) + 2hat(k)

If 3hat(i) + 2hat(j) -5hat(k)= x(2hat(i) -hat(j) + hat(k)) + y(hat(i) + 3hat(j)-2hat(k))+z(-2hat(i) + hat(j)-3hat(k)) , then

The straight line r = (hat(i) + hat(j) + 2hat(k)) + t(2hat(i) + 5hat(j) + 3hat(k)) is parallel to the plane r.(2hat(i) + hat(j) - 3hat(k)) = 5 . Find distance between the straight line and plane

If the vectors 4hat(i) + 11hat(j) + m hat(k), 7hat(i) + 2hat(j) + 6hat(k) and hat(i) + 5hat(j)+ 4hat(k) are coplanar, them m is equal to .

Let a = 2hat(i) + 5hat(j) - 7hat(k), b = hat(i) + 3hat(j) - 5hat(k) . Then (3a - 5b).(4a xx 5b) is equal to a) -7 b)0 c) -13 d)1

A plane is at a distance of 5 units from the origin and perpendicular to the vector 2hat(i) + hat(j) + 2hat(k) . The equation of the plane is a) vec(r ).(2hat(i) + hat(j) -2hat(k))=15 b) vec(r ).(2hat(i)+ hat(j)-hat(k))=15 c) vec(r ).(2hat(i) + hat(j)+ 2hat(k))=15 d) vec(r ).(hat(i) + hat(j) + 2hat(k))=15