Home
Class 12
MATHS
The straight line r = (hat(i) + hat(j) +...

The straight line `r = (hat(i) + hat(j) + 2hat(k)) + t(2hat(i) + 5hat(j) + 3hat(k))`
is parallel to the plane `r.(2hat(i) + hat(j) - 3hat(k)) = 5`. Find distance
between the straight line and plane

A

`(9)/(sqrt(14))`

B

`(8)/(sqrt(14))`

C

`(7)/(sqrt(14))`

D

`(6)/(sqrt(14))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The straight line r = (hat(i) + hat(j) + hat(k)) + alpha (2hat(i) - hat(j) + 4hat(k)) meets the XY - plane at the point

The distance between the line vec(r) = (2hat(i) + 2hat(j) - hat(k)) + lambda(2hat(i) + hat(j) - 2hat(k)) and the plane vec(r).(hat(i) + 2hat(j) + 2hat(k)) = 10 is equal to

If 3hat(i) + 2hat(j) -5hat(k)= x(2hat(i) -hat(j) + hat(k)) + y(hat(i) + 3hat(j)-2hat(k))+z(-2hat(i) + hat(j)-3hat(k)) , then

Let a = 2hat(i) + 5hat(j) - 7hat(k), b = hat(i) + 3hat(j) - 5hat(k) . Then (3a - 5b).(4a xx 5b) is equal to a) -7 b)0 c) -13 d)1

The point of intersection of the straight lines r = (3hat(i) - 4hat(j) + 5hat(k)) + lambda(-hat(i) - 2hat(j) + 2hat(k)) and (3-x)/(-1) = (y+4)/(2) = (z-5)/(7) is

If the vectors vec(a) = 2hat(i) + hat(j) + 4hat(k), vec(b) = 4hat(i) - 2hat(j) + 3hat(k) and vec(c) = 2hat(i) - 3hat(j) - lambda hat(k) are coplanar, then findvalue of lambda

If the vectors 4hat(i) + 11hat(j) + m hat(k), 7hat(i) + 2hat(j) + 6hat(k) and hat(i) + 5hat(j)+ 4hat(k) are coplanar, them m is equal to .

If a = 2 hat(i) - hat(j) - m hat(k) and b = (4)/(7)hat(i) - (2)/(7)hat(j) + 2hat(k) are collinear, then the value of m is equal to a) -7 b) -1 c)2 d)7