Home
Class 12
MATHS
If f(9)=9,f'(9)=0, then underset(xrarr9)...

If f(9)=9,f'(9)=0, then `underset(xrarr9) lim((sqrt(f(x))-3))/(sqrt(x)-3)` is a)0 b)f(0) c)f(3) d)f'(3)

A

0

B

f(0)

C

f'(3)

D

f(9)

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(1)=1,f'(1)=2 , then lim_(xto1)(sqrt(f(x))-1)/(sqrt(x)-1) is a)2 b)4 c)1 d) 1/2

underset(x to 3) (lim)( sqrt(x) - sqrt(3) )/( sqrt( x^(2) -9) ) is equal to a)1 b)3 c) sqrt3 d)0

If f be a function such that f (9) =9 and f '(9) = 3, then lim _(x to 9) ( (sqrt ( f (x)) - 3))/( sqrtx - 3) is equal to : a)9 b)3 c)1 d)6

If f(x)=3x^(2)-7x+5 , then lim_(xrarr0)(f(x)-f(0))/(x) is equal to

If f is defined and continuous on [3, 5]and f is differentiable at x=4 and f' (4) = 6 , then the value of underset(x to 0)(lim) (f(4 + x) - f(4- x) )/( 4x) is equal to a)0 b)2 c)3 d)4

Find the domain of the function f(x)=(sin^(-1)(x-3))/(sqrt(9-x^2))