Home
Class 12
MATHS
If f(x)=sqrt(2x)+(4)/sqrt(2x) then f'(2...

If `f(x)=sqrt(2x)+(4)/sqrt(2x)` then f'(2) is equal to

A

0

B

`-1`

C

1

D

2

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If f'(x)=(1)/(-x+sqrt(x^(2)+1)) and f(0)=-(1+sqrt(2))/(2) then f(1) is equal to a) -log(sqrt(2)+1) b)1 c) 1+sqrt(2) d) 1/2log(1+sqrt(2))

If f(x)=(x-2)(x-4)(x-6)...(x-2n), then f'(2) is -

The function f, g and h satisfy the relations f'(x)=g(x+1)andg'(x)=h(x-1) . Then, f''(2x) is equal to

If y = sin ^(-1) (2x sqrt (1- x ^(2))), - (1)/( sqrt2) le x le (1)/( sqrt2) , then (dy)/(dx) is equal to a) (x)/( sqrt (1- x ^(2))) b) (1)/( sqrt(1- x ^(2))) c) (2)/( sqrt (1 - x ^(2))) d) (2x)/( sqrt (1- x ^(2)))

If intxf(x)dx=(f(x))/2 , then f(x) is equal to :

If f(x) = cos^(-1) ((2 cos x + 3 sin x)/( sqrt(13) ) ) , then [f' (x)]^2 is equal to a) sqrt(1+x) b) 1+2x c) 2 d) 1

int(dx)/((1+sqrt(x))sqrt((x-x^(2)))) is equal to

If f(x)=x+1 and g(x)=2x , then f{g(x)} is equal to

int(log (x+sqrt(1+x^(2))))/(sqrt(1+x^(2)) )dx is equal to