Home
Class 12
MATHS
If z^(2) + z + 1 = 0 where z is a comple...

If `z^(2) + z + 1 = 0` where z is a complex num ber, then
`(z+(1)/(z))^(2)+(z^(2)+(1)/(z^(2)))^(2)+(z^(3)+(1)/(z^(3)))^(2)` equal

A

4

B

5

C

6

D

7

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If z ^(2) + z + 1 = 0, where z is a complex number, then the value of (z + (1)/(z)) ^(2) + (z ^(2) + (1)/( z ^(2))) ^(2) + (z ^(3) + (1)/(z ^(3))) ^(2) +...( z ^(6) + (1)/(z ^(6)) )^(2) is

If |z-2|= "min" {|z-1|, |z-5|} , where z is a complex number, then

If z_(1) and z_(2) are non -zero complex numbers, then show that (z_(1) z_(2))^(-1)=z_(1)^(-1) z_(2)^(-1)

If (2 z _(1))/(3z _(2)) is a purely imaginary, then | ( z _(1) - z _(2))/( z _(1) + z _(2))| is:

If z_(1) and z_(2) are two non-zero complex numbers such that |z_(1) + z_(2)| = |z_(1)| + |z_(2)| , then arg ((z_(1))/(z_(2))) is equal to a)0 b) -pi c) -(pi)/(2) d) (pi)/(2)

If z_(1) and z_(2) are two complex numbers satisfying the equation |(z_(1) + iz_(2))/(z_(1)-iz_(2))|=1 , then (z_(1))/(z_(2)) is

If z _(1) = 2 sqrt2 (1 + i) and z _(2) = 1 + isqrt3, then z _(1) ^(2) z _(2) ^(3) is equal to

Let z _(1) = 1 + i sqrt3 and z _(2) = 1 + i, then arg ((z _(1))/( z _(2))) is

If z=(1)/(z)=2 cos 60^(@) , then z^(1000)+(1)/(z^(1000))+1 is equal to