Home
Class 12
MATHS
If z= cos (pi)/(3) - i sin (pi)/(3) then...

If z= cos `(pi)/(3) - i sin (pi)/(3)` then `z^(2)-z+1` is equal to

A

0

B

1

C

`-1`

D

`(pi)(2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If z = ( 7-i)/(3-4i) , " then " z^(14) is equal to :

If z= 2- isqrt(3) then |z^(4)| is equal to

If z_(1) = sqrt(2)(cos""(pi)/(4) + "" i sin""(pi)/(4)) and z_(2) = sqrt(3)(cos""(pi)/(3) + i sin""(pi)/(3)) , then |z_(1)z_(2)| is

((1+cos(pi/(12))+i sin ((pi)/(12)))/(1+cos (pi/(12))- i sin (pi/(12))))^(72) is equal to

If z _(r) = cos ((pi)/(2 ^(r))) + i sin ((pi )/( 2 ^(r))), then z _(1) . z _(2). z _(3)... upto oo equals : a)-3 b)-2 c)-1 d)0

If z=(-1)/(2)+i(sqrt(3))/(2) , then 8+10z+7z^(2) is equal to a) -(1)/(2)-i(sqrt(3))/(2) b) (1)/(2)+isqrt(3)/(2) c) -(1)/(2)+i(3sqrt(3))/(2) d) (sqrt(3))/(2)i

If z = (2-i)/(i) , then R e(z^(2)) + I m(z^(2)) is equal to a)1 b)-1 c)2 d)-2

If z= e^(i 4pi//3) , then (z^(192) + z^(194))^(3) is equal to

If z_1 and z_2 be complex numbers such that z_1 + i(bar(z_2) ) =0 and "arg" (bar(z_1) z_2 ) = (pi)/(3) . Then "arg"(bar(z_1)) is equal to a) (pi)/(3) b) pi c) (pi)/(2) d) (5pi)/(12)