Home
Class 12
MATHS
If int(0)^(x)f(t)dt=x^(2)+e^(x)(xgt0) th...

If `int_(0)^(x)f(t)dt=x^(2)+e^(x)(xgt0)` then f(1) is equal to
a)1+e b)2+e c)3+e d)e

A

1+e

B

2+e

C

3+e

D

e

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(x)f(t)dt=x+int_(x)^(1)tf(t)dt , then the value of f(1) is

The value of int_(0)^(1)sqrt(x)e^(sqrt(x))dx is equal to a) ((e-2))/(2) b) 2(e-2) c) 2e-1 d) 2(e-1)

If y=(logx)^(2) , then (dy)/(dx) at x=e is equal to a)2 b) e/2 c)e d) 2/e

int_(-1)^(1)(e^(x^(3)) + e^(-x^(3)))(e^(x) - e^(-x)) dx is equal to

If f(x)=cosx-int_(0)^(x)(x-t)f(t)dt , then f''(x)+f(x) is equal to a) -cosx b) -sinx c) int_(0)^(x)(x-t)f(t)dt d)0

If f(x)=log[e^(x)((3-x)/(3+x))^(1//3)] then f'(1) is equal to a) (3)/(4) b) (2)/(3) c) (1)/(3) d) (1)/(2)

int_(-pi/4)^(pi/4)(e^(x)*sec^(2)xdx)/(e^(2x)-1) is equal to

int (dx)/(e^(x)+e^(-x)+2) is equal to

If int_(0)^(1)(e^(t)dt)/(t+1)=a , then int_(b-1)^(b)(e^(-t)dt)/(t-b-1) is equal to a) ae^(-b) b) -ae^(-b) c) be^(-b) d)None of these

The value of int _(0) ^(1) (dx)/(e ^(x) + e ) is equal to a) (1)/(e) log ((1 + e )/(2)) b) log ((1 + e )/(2)) c) 1/e log (1 + e) d) log ((2)/(1 + e ))