Home
Class 12
MATHS
underset(xrarr0)lim (sqrt(2+x)-sqrt(2-x)...

`underset(xrarr0)lim (sqrt(2+x)-sqrt(2-x))/(x)` is equal to

A

`(1)/sqrt(2)`

B

`sqrt(2)`

C

0

D

does not exist

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following limits underset (x rarr 0)Lt (sqrt (1+x)-sqrt(1-x))/x

lim_(x rarr 0)((x)/(sqrt(1+x) + sqrt(1-x))) is equal to

If f(9)=9,f'(9)=0, then underset(xrarr9) lim((sqrt(f(x))-3))/(sqrt(x)-3) is a)0 b)f(0) c)f(3) d)f'(3)

underset( x to 0)(lim) (e^(x^2) - cos x)/( x^2) is equal to a) 3/2 b) 1/2 c)1 d) - (3)/(2)

Evalute lim_(xrarr0)(sqrt(1+x)+sqrt(1-x))/(1+x)

Evaluate underset (x rarr a)lim (sqrt x+sqrt a)/(x+a)

int(dx)/((1+sqrt(x))sqrt((x-x^(2)))) is equal to

lim_(xrarr0)(sqrt(1+x)-1)/x

If f(x)=sqrt(2x)+(4)/sqrt(2x) then f'(2) is equal to