Home
Class 12
MATHS
int (dx)/(e^(x)+e^(-x)+2) is equal to...

`int (dx)/(e^(x)+e^(-x)+2)` is equal to

A

`(1)/(e^(x)+1)+c`

B

`(-1)/(e^(x)+1)+c`

C

`(1)/(e^(x)-1)+c`

D

`(1)/(e^(-x)-1)+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int( d x)/(e^x+e^(-x)) is equal to a) tan ^(-1)(e^x)+C b) tan ^(-1)(e^-x)+C c) log (e^x-e^-x)+C d) log (e^x+e^-x)+C

int(4e^(x))/(2e^(x)-5e^(-x))dx is equal to

int (4e^(x) + 6e^(-x))/(9e^(x) - 4e^(-x))dx is equal to

int(1+x)/(x+e^(-x))dx is equal to

int e^(x log a ) e^(x) dx is equal to :

int_(-1)^(1)(e^(x^(3)) + e^(-x^(3)))(e^(x) - e^(-x)) dx is equal to

int(dx)/(sqrt(1-e^(2x))) is equal to

The value of int _(0) ^(1) (dx)/(e ^(x) + e ) is equal to a) (1)/(e) log ((1 + e )/(2)) b) log ((1 + e )/(2)) c) 1/e log (1 + e) d) log ((2)/(1 + e ))

int((x-a)/(x) - (x)/(x+a))dx is equal to