Home
Class 12
MATHS
The latus rectum of the hyperbola 9x ^(2...

The latus rectum of the hyperbola `9x ^(2) -16 y^(2) + 72x - 32y-16=0` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The eccentricity of the hyperbola 9x^(2)-16y^(2)+72x-32y-16=0 , is

The latus -rectum of the hyperbola 16x^(2) - 9y^(2) = 576 is (64)/(5)

Find the length of axes, eccentricity, centre, foci and latus rectum of the hyperbola 16x^2 - 3y^2 - 32x - 12y - 44 = 0 .

Let l_(1) be the length of the latus rectum of the parabola 9x^(2)-6x+36y+19=0. Let l_(2), be the length of the latus rectum of the hyperbola 9x2-16y^(2)-18x-32y-151=0. Let n be the unit digit in the product of l_(1) and l_(2) The number of terms in the binomial expansion of (1+x)^(n) is

Find the eccentricity, length of a latus rectum, equations of the latus rectum of the hyperbola (x^(2))/(16)-(y^(2))/(9) =1 .

The length of the transverse axis of the hyperbola 9x^(2)-16y^(2)-18x -32y - 151 = 0 is

The length of the latus rectum of the hyperbola 3x ^(2) -y ^(2) =4 is