Home
Class 11
MATHS
If I(n)=int tan^(n)xdx then I(0)+I(1)+2(...

If `I_(n)=int tan^(n)xdx` then `I_(0)+I_(1)+2(I_(2)+......+I_(8))+I_(9)+I_(10)=`
(a) `(tan x)/(1)+(tan^(2)x)/(2)+....+(tan^(9)x)/(9),`
(b) `-((tan x)/(1)+(tan^(2)x)/(2)+......+(tan^(9)x)/(9))`
(c) `(cot x)/(1)+(cot^(2)x)/(2)+......+(cot^(9)x)/(9)`
(d) `-((cot x)/(1)+(cot^(2)x)/(2)+......+(cot^(9)x)/(9))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)=int cot^(n) x dx , then I_(0)+I_(1)+2(I_(2)+I_(3)+...+I_(8))+I_(9)+I_(10) equals to (where u=cot x )

If I_(n)=int cot^(n)dc and I_(0)+I_(1)+2(I_(2)+......+I_(8))+I_(9)=A(u+(u^(2))/(2)+......+(u^(9))/(9)) constant where u=cot x then

int cot x tan^(3)[(x)/(2)]

tan^(-1)(cot x)-tan^(-1)(cot2x)=

cot(tan^(-1)x+cot^(-1)x)

tan^(2)x+cot^(2)x=2

int (tan x +cot x)^(2)dx

(d) / (dx) [((tan ^ (2) 2x-tan ^ (2) x) / (1-tan ^ (2) 2x tan ^ (2) x)) cot3x] =

tan^(-1)(cot x)+cot^(-1)(tan x)

int(cot x-tan x)^(2)dx