Home
Class 11
MATHS
If the lines (x-2)/(1)=(y-3)/(1)=(x-4)/(...

If the lines `(x-2)/(1)=(y-3)/(1)=(x-4)/(-k)` and `(x-1)/(k)=(y-4)/(2)=(z-5)/(1)` are coplanar,then `k` can have

Promotional Banner

Similar Questions

Explore conceptually related problems

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if

If the lines (x-2)/(1)=(y-3)/(1)=(x-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(x-5)/(1) are coplanar,then k can have (1) exactly one value (2) exactly two values (3) exactly three values (4) any value

the lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(1)=(z-5)/(1) are coplanar if k=?

If the lines (x-2)/1=(y-3)/1=(z-4)/(-k) and (x-1)/k=(y-4)/2=(z-5)/1 are coplanar then k can have (A) exactly two values (B) exactly thre values (C) any value (D) exactly one value

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar if a.k=1 or -1 b.k=0 or -3ck=3 or -3d.k=0 or -1