Home
Class 12
MATHS
The minimum value of f(x)-sin^(4)x+cos^(...

The minimum value of `f(x)-sin^(4)x+cos^(4)x,0lexle(pi)/(2)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of f(x)=sin^4x+cos^4x , 0lexlepi/2 is

Find the points of local maxima and local minima, if any, of the following functions. Find also the local maximum and local minimum values : f(x)=sin^(4)x+cos^(4)x,0ltxlt(pi)/(2).

f(x) = sin^(4)x+cos^(4)x in [0,(pi)/(2)]

Let f(x)=2cos ec2x+sec x+cos ecx, then the minimum value of f(x) for x in(0,(pi)/(2)) is

The minimum value of (7)/(4sin x+3cos x+2) is

Find the maximum and minimum value of f(x)=sin x+(1)/(2)cos2x in [0,(pi)/(2)]

Find the maximum and minimum values of f(x)=sec x+log cos^(2)x,0

If 0