Home
Class 11
MATHS
If zk = e^(i theta) for k = 1, 2, 3, 4, ...

If `z_k = e^(i theta)` for `k = 1, 2, 3, 4,` where `i^2 = -1,` and if `|sum_(k=1)^4 1/z_k|= 1,` then `|sum_(k=1)^4 z_k|` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_(k)=e^(i theta) for k=1,2,3,4, where i^(2)=-1, and if |sum_(k=1)^(4)(1)/(z_(k))|=1, then |sum_(k=1)^(4)z_(k)| is equal to

The sum sum_(k=1)^(n)k(k^(2)+k+1) is equal to

sum_(x-1)^(20)k(1)/(2^(k)) is equal to

The sum sum_(k=1)^(20) k (1)/(2^(k)) is equal to

The Sum sum_(K=1)^(20)K(1)/(2^(K)) is equal to.

sum_(i=1)^(oo)sum_(j=1)^(oo)sum_(k=1)^(oo)(1)/(2^(i+j+k)) is equal to

sum_(k=1)^(oo)sum_(r=1)^(k)1/(4^(k))(""^(k)C_(r)) is equal to=________

The sum sum_(k=1)^(100)(k)/(k^(4)+k^(2)+1) is equal to