Home
Class 11
MATHS
If alpha,beta are the roots of x^(2)+x+1...

If `alpha,beta` are the roots of `x^(2)+x+1=0` ,then `(alpha)/(beta)+(beta)/(alpha)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of x^(2)+7x+3=0 ,then (alpha-1)^(2)+(beta-1)^(2)=

If alpha and beta are the roots of x^(2)+4x+6=0 and N=1/((alpha)/(beta)+(beta)/(alpha)) then N=

If alpha,beta are the roots of ax^(2)+bx+c-0 then alpha beta^(2)+alpha^(2)beta+alpha beta=

If alpha,beta and 1 are the roots of x^(3)-2x^(2)-5x+6=0 then (alpha,beta)=

If alpha and beta are the roots of x^2=x+1 then alpha^2/beta-beta^2/alpha=

If alpha,beta,gamma are the roots of x^(3)+ax^(2)+bx+c=0 then Sigma((alpha)/(beta)+(beta)/(alpha))=

If alpha,beta,gamma are the roots of x^(3)+2x^(2)+3x+8=0 then (alpha+beta)(beta+gamma)(gamma+alpha)=

If alpha and beta are the roots of 2x^(2) - x - 2 = 0 , then (alpha^(3) + beta^(-3) + 2alpha^(-1) beta^(-1)) is equal to

If alpha,beta are the roots of 1+x+x^(2)=0 then the value of alpha^(4)+beta^(4)+alpha^(-4)beta^(-4) =