Home
Class 11
MATHS
If A=[[1,2],[2,1]] and f(x)=(1+x)(1-x) ,...

If `A=[[1,2],[2,1]]` and `f(x)=(1+x)(1-x)` ,then `f(A)` is

A

`[[1 ,1],[1,1]]`

B

`[[2 ,2],[2,2]]`

C

`[[-1 ,-1],[-1,-1]]`

D

None of these

Text Solution

Verified by Experts

`because f(x) = (1+x)/(1-x)`
`rArr (1-x) f(x) = 1 +x`
`rArr (I-A)f(A) = (I+A)`
` rArr f(A) = (I-A)^(-1) (I+A)`
`([[1,0],[0,1]]-[[1,2],[2,1]])^(-1)([[1,0],[0,1]]+[[1,2],[2,1]])`
`[[0,-2],[-2,0]]^(-1)[[2,2],[2,2]]=-1/4[[0,2],[2,0]][[2,2],[2,2]]`
`=-1/4 [[4,4],[4,4]]=[[-1,-1],[-1,-1]]`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(x-1)/(x+1) then f(2x) is equal to

f(x)+f(1-x)=2, then f((1)/(2)) is

If f(x)=x^2+2x+1 , then: f(x-1)-=

If f(2x + 1 ) = x + 1 , then f(x^2) =

If f(x)=log((1+x)/(1-x)), then f(x) is (i) Even Function (ii) f(x_(1))-f(x_(2))=f(x_(1)+x_(2)) (iii) ((f(x_(1)))/(f(x_(2))))=f(x_(1)-x_(2)) (iv) Odd function

f(x)+f(1-x)=2 then find f((1)/(2))=

If f(x)=(x-1)/(2x^(2)-7x+5) for x!=1 and f(x)=-(1)/(3) for x=1 then f'(1)=

If f(x)=(x+1)/(x-1) , then the value of f(f(2)) is