Home
Class 12
MATHS
If (a+b x)/(a-b x)=(b+c x)/(b-c x)=(c+dx...

If `(a+b x)/(a-b x)=(b+c x)/(b-c x)=(c+dx)/(c-dx)(x!=0)` , then show that `a ,\ b ,\ c\ a n d\ d` are in G.P.

Promotional Banner

Similar Questions

Explore conceptually related problems

If (a+bx)/(a-bx)=(b+cx)/(b-cx)=(c+dx)/(c-dx)(x!=0) then show that a,b,c and d are in G.P.

(a+bx)/(a-bx)=(b+cx)/(b-cx)=(c+dx)/(c-dx)(x!=0) then show that a,b,c and d are in G.P.

If the roots of (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0 are equal then show that a=b=c

If a,b,c,d………are in G.P., then show that (a+b)^2, (b+c)^2, (c+d)^2 are in G.P.

If a,b,c,d………are in G.P., then show that (a-b)^2, (b-c)^2, (c-d)^2 are in G.P.

If y=(x+a)(x+b)(x+c)(x+d)/(x-a)(x-b)(x-c)(x-d) then the value of dy/dx:

Prove that =|a cc-a a+cc bb-c b+c a-bb-c0a-c x y z1+x+y|=0 implies that a ,b ,c are in A.P. or a ,c ,b are in G.P.

If ((x-a)(x-b))/((x-c)(x-d)^(2))>=0; where a>b>c>=d>0, then x in