Home
Class 11
MATHS
The value of x where xgt0 and tan(sec^(-...

The value of x where `xgt0 and tan(sec^(-1)(1/x))=sin(tan^(-1)2)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Value of x satisfying tan(sec^(-1)x)=sin(cos^(-1)((1)/(sqrt(5))))

The value of lim_(x rarr0)(sin^(-1)(2x)-tan^(-1)x)/(sin x) is equal to:

sec^(-1)((1+tan^(2)x)/(1-tan^(2)x))

The value of int_(0)^(1)(tan^(-1)((x)/(x+1)))/(0tan^(-1)((1+2x-2x^(2))/(2)))dx is

The value of int_(0)^(1)(tan^(-1)((x)/(x+1)))/(0tan^(-1)((1+2x-2x^(2))/(2)))dx is

sin(cot^(-1)(tan(tan^(-1)x))),x in(0,1]

The value of tan(sin^(-1)(cos(sin^(-1)x)))tan(cos^(-1)(sin(cos^(-1)x))), where x in(0,1) is equal to 0(b)1(c)-1(d) none of these

Find the set of all real values of x satisfying the inequality sec^(-1)xgt tan^(-1)x .

Value of sin{tan^(-1)x+tan^(-1)((1)/(x))}_( is )

If (x -1) (x^(2) + 1) gt 0 , then find the value of sin((1)/(2) tan^(-1).(2x)/(1 - x^(2)) - tan^(-1) x)