Home
Class 12
MATHS
The function f(x)=(tanx^(11))e^(x^5) sgn...

The function `f(x)=(tanx^(11))e^(x^5) sgn(x^(11))*[1/(3x^2+2)]` ,where [.] denotes greatest integer functin

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=(tan x^(11))e^(x^(5))sgn(x^(11))*[(1)/(3x^(2)+2)] where [.] denotes greatest integer functin ]]

If f(x)=[2x], where [.] denotes the greatest integer function,then

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

f(x)=sin^(-1)[log_(2)((x^(2))/(2))] where [.] denotes the greatest integer function.

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

The range of the function f(x)=[log_((2)/(3))|(x^(2)-1)/(x^(2)+1)|] where [-1 denotes the greatest integer function is

f(x)=1+[cos x]x, in 0<=x<=(x)/(2) (where [.] denotes greatest integer function)

f(x)=1+[cos x]x in 0<=x<=(pi)/(2) (where [.] denotes greatest integer function)

Evaluate: int_(-5)^(5)x^(2)[x+(1)/(2)]dx (where [.] denotes the greatest integer function).