Home
Class 12
MATHS
The domain of definition of the function...

The domain of definition of the function `f(x)=sqrt(sin^(-1)(2x)+pi/6)` for real-valued `x` is `[-1/4,1/2]` (b) `[-1/2,1/2]` (c) `(-1/2,1/9)` (d) `[-1/4,1/4]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) for real valued of x, is

The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) for real-valued x is (a) [-1/4,1/2] (b) [-1/2,1/2] (c) (-1/2,1/9) (d) [-1/4,1/4]

The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) for real-valued x is (a) [-1/4,1/2] (b) [-1/2,1/2] (c) (-1/2,1/9) (d) [-1/4,1/4]

The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) for real-valued x is (a). [-1/4,1/2] (b) [-1/2,1/2] (c) (-1/2,1/9) (d) [-1/4,1/4]

The domain of definition of the function f(x)=sin^(-1)(|x-1|-2) is

The domain of definition of the function f(x)=sin^(-1)(|x-1|-2) is

The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) for real - valued x is a) [-1/4, 1/2] b) [-1/2,1/2] c) (-1/2, 1/9) d) [-1/4,1/4]

The domain of definition of the function f(x)= sin^(-1) (|(x-1)|-2) is

The domain of definition of function f(x)=sqrt(cos^(-1)x-2sin^(-1)x) is equal to