Home
Class 12
MATHS
Let f(x)={|x-2|+a^2-6a+9, x < 2 and 5-2x...

Let `f(x)={|x-2|+a^2-6a+9, x < 2 and 5-2x, x >= 2` If `lim_(x->2) [f(x)]` existsn the possible values a can take is/are (where [.] represents the grestest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)={|x-2|+a^(2)-6a+9,x =2 If lim_(x rarr2)[f(x)] existsn the possible values a can take is/are (where [.] represents the grestest integer function)

lim_(xrarr0) [(100 tan x sin x)/(x^2)] is (where [.] represents greatest integer function).

Let [.] represent the greatest integer function and f(x)=[tan^(2)x] then :

f:(2,3)rarr(0,1) defined by f(x)=x-[x], where [.] represents the greatest integer function.

If f(x)= [x ]^(2)+2 [x+1] -10 then complete solution of f(x)=0 where, [. ]represents the greatest integer function is

lim_(x rarr0)(tan^(2)[x])/([x]^(2)), where [] represents greatest integer function,is

Evaluate :(lim)_(x rarr2^(+))([x-2])/(log(x-2)), where [.] represents the greatest integer function.

The value of lim_(x rarr2)([2-x]+[x-2]-x) equals (where [.] denotes greatest integer function)

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the greatest integer function)

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then