Home
Class 11
MATHS
The points (1,1,p) and (-3,0,1) are equi...

The points `(1,1,p)` and `(-3,0,1)` are equidistant from the plane `bar(r)*(3bar(i)+4bar(j)-12bar(k))+13=0` ,then the value of `p(p!=1)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If the points (1,1,p) and (3,0,1) be equidistant from the plane vec r*(3hat i+4hat j-12hat k)+13=0, then find the value of p.

The angle between the planes bar(r)*(2bar(i)-3bar(j)+4bar(k))+11=0 and "bar(r)*(3bar(i)-2bar(j))=0. is

The angle between the planes bar(r)*(2bar(i)-3bar(j)+4bar(k))+11=0 and bar(r).(3bar(i)-2bar(j)-3bar(k))+27=0 is

If bar(p) and bar(s) are not perpendicular to each other and bar(r)xxbar(p)=bar(q)xxbar(p)o*bar(r).bar(s)=0, then bar(r) is

If bar(a).i+bar(a).(i+j)+bar(a).(i+j+k)=1 then bar(a)=

A point on the line bar(r)=(1-t)(2bar(i)+3bar(j)+4bar(k))+t(3bar(i)-2bar(j)+2bar(k))

The unit vector perpendicular to both of the vectors 2bar(i)-bar(j)+bar(k) and 3bar(i)+4bar(j)-bar(k) is.

Solve: 0.bar43-1.bar(76)+3.bar(12)

bar(F),=abar(i)+3bar(j)+6bar(k) and , bar(r),=2bar(i)-6bar(j)-12bar(k) .The value of a for which the toque is 0

The angle between planes bar(r).(2bar(i)-3bar(j)+4bar(k))+11=0 and bar(r).(3bar(i)-2bar(j)-3bar(k))+27=0 is