Home
Class 10
MATHS
In Fig. 6.48, angle ACB = 90^@ and CD bo...

In Fig. 6.48, `angle ACB = 90^@` and `CD bot AB`. Prove that `(BC^2)/(AC^2)=(BD)/(AD)`.

Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

In figure, ABC is a triangle in which angle ABC gt 90^(@) and AD bot CB produced. Prove that AC ^(2) = AB ^(2) + BC ^(2) + 2 BC BD.

In figure, AD is a median of a triangle ABC and AM bot BC. Prove that AC ^(2) + AB ^(2) = 2 AD ^(2) + (1)/(2) BC ^(2).

In figure, AD is a median of a triangle ABC and AM bot BC. Prove that AC ^(2) = AD ^(2) + BC. DM + ((BC)/( 2)) ^(2)

In figure, AD is a median of a triangle ABC and AM bot BC. Prove that AB ^(2) = AD ^(2)- BC. DM + ((BC)/( 2 )) ^(2)

In fig., LM || CB , and LN||CD.Prove that (AM)/(AB)=(AN)/(AD) . .

In fig., ABC is triangle in which angleABC > 90@0 and AD bot BC produced, prove that AC^2 = AB^2 + BC^2 + 2BC.BD . .

In fig., AD is a median of a triangle ABC and AM bot BC.Prove that :- AC^2+AB^2= 2AD^2+1/2BC^2 . .

In fig., AD is a median of a triangle ABC and AM bot BC.Prove that :- AC^2=AD^2+BC.DM+((BC)/2)^2 . .

In fig., AD is a median of a triangle ABC and AM bot BC.Prove that :- AB^2=AD^2-BC.DM+((BC)/2)^2 . .

In Fig if AD bot BC , prove that AB^2 + CD^2 = BD^2 + AC^2 .