Home
Class 12
MATHS
If alpha ne beta, alpha^(2)=5 alpha-3, b...

If `alpha ne beta, alpha^(2)=5 alpha-3, beta^(2)=5beta-3`, then the equation having `(alpha)/(beta) and (beta)/(alpha)` as its roots is

A

`3x^(2)-19x -3=0`

B

`3x^(2)+19x-3=0`

C

`x^(2) + 19x + 3=0`

D

`3x^(2)-19x+3=0`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(2)alpha-sin^(2)alpha=tan^(2)beta , then prove thta tan^(2)alpha=cos^(2)beta-sin^(2)beta .

If alpha and beta are the roots of the equation x ^(2) + alpha x + beta = 0, then

If alpha, beta, gamma are the roots of ax^(3) + bx^(2) + cx + d = 0 and |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| = 0, alpha != beta != gamma , then find the equation whose roots are alpha + beta - gamma, beta + gamma - alpha and gamma + alpha - beta