Home
Class 12
MATHS
The maximum value of the function 2x^(3)...

The maximum value of the function `2x^(3)-15x^(2 ) + 36x+4` is attained at a)0 b)3 c)4 d)2

A

0

B

3

C

4

D

2

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of 2x^(3) - 9x^(2) + 12 x + 4 is a)4 b)5 c)6 d)8

Find the absolute maximum value and minimum value of the function. f(x)=2x^3-15x^2+36x+1, x in [1,5]

The maxima and minima of the function 2x ^(3) - 15 x ^(2) + 36 x + 10 occur respectively at

Find the maximum and minimum value of the function f(x)=x^3-6x^2+9x+15 .

The function f(x)=3x^(3)-36x+99 is increasing for

Find the intervals in which the function f(x)= 2x^3-15x^2+36x+1 is increasing

The minimum value of function f(x) = 8^(sin^(-1)x)+8^(cos^(-1)x) is a) 2^(1+pi/4) b) 2^(-1+(3pi)/4) c) 2^(1+(3pi)/4) d) 2^(-1+(pi)/2)

Let f(x)=[3"sin"^(2)(10x+11)-7]^(2)" for "x inR . Then, the maximum value of the function f is a)9 b)16 c)49 d)100

Show that the function x^3-6x^2+15x+4 is strictly increasing in R.