Home
Class 9
MATHS
Evaluate each of the following : (i)2...

Evaluate each of the following :
`(i)2^(3)xx2^(2)" "(ii)3^(5)divide3^(2)" "(iii)(5^(2))^(3)" "(iv)((3)/(4))^(3)" "(v)((2)/(3))^(-3)" "(vi)2^(4)xx2^(-4)`

Text Solution

AI Generated Solution

The correct Answer is:
Let's evaluate each part step by step: ### (i) \(2^3 \times 2^2\) 1. **Identify the bases and exponents**: The bases are the same (2), and the exponents are 3 and 2. 2. **Use the property of exponents**: According to the property \(a^m \times a^n = a^{m+n}\), we can add the exponents. 3. **Calculate**: \[ 2^3 \times 2^2 = 2^{3+2} = 2^5 \] 4. **Evaluate \(2^5\)**: \[ 2^5 = 32 \] **Final answer for (i)**: \(32\) ### (ii) \(3^5 \div 3^2\) 1. **Identify the bases and exponents**: The bases are the same (3), and the exponents are 5 and 2. 2. **Use the property of exponents**: According to the property \(a^m \div a^n = a^{m-n}\), we can subtract the exponents. 3. **Calculate**: \[ 3^5 \div 3^2 = 3^{5-2} = 3^3 \] 4. **Evaluate \(3^3\)**: \[ 3^3 = 27 \] **Final answer for (ii)**: \(27\) ### (iii) \((5^2)^3\) 1. **Identify the base and exponents**: The base is 5, the first exponent is 2, and the second exponent is 3. 2. **Use the property of exponents**: According to the property \((a^m)^n = a^{m \cdot n}\), we can multiply the exponents. 3. **Calculate**: \[ (5^2)^3 = 5^{2 \cdot 3} = 5^6 \] 4. **Evaluate \(5^6\)**: \[ 5^6 = 15625 \] **Final answer for (iii)**: \(15625\) ### (iv) \(\left(\frac{3}{4}\right)^3\) 1. **Identify the base and exponent**: The base is \(\frac{3}{4}\) and the exponent is 3. 2. **Use the property of exponents**: According to the property \(\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}\), we can apply the exponent to both the numerator and denominator. 3. **Calculate**: \[ \left(\frac{3}{4}\right)^3 = \frac{3^3}{4^3} \] 4. **Evaluate**: \[ 3^3 = 27 \quad \text{and} \quad 4^3 = 64 \] Therefore, \[ \frac{3^3}{4^3} = \frac{27}{64} \] **Final answer for (iv)**: \(\frac{27}{64}\) ### (v) \(\left(\frac{2}{3}\right)^{-3}\) 1. **Identify the base and exponent**: The base is \(\frac{2}{3}\) and the exponent is -3. 2. **Use the property of exponents**: According to the property \(a^{-m} = \frac{1}{a^m}\), we can take the reciprocal. 3. **Calculate**: \[ \left(\frac{2}{3}\right)^{-3} = \frac{1}{\left(\frac{2}{3}\right)^3} = \frac{1}{\frac{2^3}{3^3}} = \frac{3^3}{2^3} \] 4. **Evaluate**: \[ 3^3 = 27 \quad \text{and} \quad 2^3 = 8 \] Therefore, \[ \frac{3^3}{2^3} = \frac{27}{8} \] **Final answer for (v)**: \(\frac{27}{8}\) ### (vi) \(2^4 \times 2^{-4}\) 1. **Identify the bases and exponents**: The bases are the same (2), and the exponents are 4 and -4. 2. **Use the property of exponents**: According to the property \(a^m \times a^n = a^{m+n}\), we can add the exponents. 3. **Calculate**: \[ 2^4 \times 2^{-4} = 2^{4 + (-4)} = 2^0 \] 4. **Evaluate \(2^0\)**: \[ 2^0 = 1 \] **Final answer for (vi)**: \(1\) ---

Let's evaluate each part step by step: ### (i) \(2^3 \times 2^2\) 1. **Identify the bases and exponents**: The bases are the same (2), and the exponents are 3 and 2. 2. **Use the property of exponents**: According to the property \(a^m \times a^n = a^{m+n}\), we can add the exponents. 3. **Calculate**: \[ ...
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Problems From NCERT/exemplar|7 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 1a|5 Videos
  • LINES AND ANGLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (long Answer Questions )|6 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|16 Videos

Similar Questions

Explore conceptually related problems

Evaluate each of the following (i) 5^2\xx\ 5^4 (ii) (3^2)^3

Evaluate each of the following : (i)4^(3//2)" "(ii)625^(3//4)" "(iii)81^(3//4)

Evaluate each of the following: 2/3-3/5 (ii) 4/7-2/(-3) (iii) 4/7-(-5)/(-7)

Find the value of each of the following: (i) (-3)^2 (ii) (-4)^3 (iii) (-5)^4

Evaluate each of the following (i) 5^2 x 5^4 (ii) 5^8 divide 5^3 (iii) (3^2)^3 (iv) (11/12)^3 (v) (3/4)^-3

Evaluate each of the following: (i) 5^2*5^4 (ii) 5^8+5^3 (iii) (3^2)^3 ((11)/(12))^3 (iv) (3/4)^(-3)

Evaluate each of the following: (i) (2/(11))^4*((11)/3)^2*(3/2)^3 (ii) (1/2)^5*((-2)/3)^4*(3/5)^(-1)

Evaluate each of the following: (i)\ 2^(55)xx\ 2^(60)-\ 2^(97)xx\ 2^(18) (ii)\ (2/3)^2xx\ (2/5)^(-3\ )xx\ (3/5)^2

Express each of the following in the form p/q : (i)(2/3)^2 (ii) ((-3)/4)^3 (iii) ((-2)/5)^4

Evaluate each of the following: (i)\ (2/(11))^4\ xx\ \ ((11)/3)^2\ xx\ \ (3/2)^3 (ii)\ (1/2)^5\ xx\ ((-2)/3)^4xx\ (3/5)^(-1)