Home
Class 9
MATHS
Find the value of a and b if (i)(sqrt(...

Find the value of a and b if
`(i)(sqrt(3)+1)/(sqrt(3)-1)=a+bsqrt(3)" "(ii)(5+2sqrt(3))/(5-2sqrt(3))=a+bsqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given equations step by step, we will find the values of \( a \) and \( b \) for both parts of the question. ### Part (i): We need to find \( a \) and \( b \) such that: \[ \frac{\sqrt{3} + 1}{\sqrt{3} - 1} = a + b\sqrt{3} \] **Step 1:** Multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{(\sqrt{3} + 1)(\sqrt{3} + 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)} \] **Step 2:** Simplify the numerator: \[ (\sqrt{3} + 1)^2 = 3 + 2\sqrt{3} + 1 = 4 + 2\sqrt{3} \] **Step 3:** Simplify the denominator: \[ (\sqrt{3})^2 - (1)^2 = 3 - 1 = 2 \] **Step 4:** Combine the results: \[ \frac{4 + 2\sqrt{3}}{2} = \frac{4}{2} + \frac{2\sqrt{3}}{2} = 2 + \sqrt{3} \] **Step 5:** Compare with \( a + b\sqrt{3} \): \[ a + b\sqrt{3} = 2 + 1\sqrt{3} \] Thus, \( a = 2 \) and \( b = 1 \). ### Part (ii): Now we will solve the second part: \[ \frac{5 + 2\sqrt{3}}{5 - 2\sqrt{3}} = a + b\sqrt{3} \] **Step 1:** Multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{(5 + 2\sqrt{3})(5 + 2\sqrt{3})}{(5 - 2\sqrt{3})(5 + 2\sqrt{3})} \] **Step 2:** Simplify the numerator: \[ (5 + 2\sqrt{3})^2 = 25 + 20\sqrt{3} + 12 = 37 + 20\sqrt{3} \] **Step 3:** Simplify the denominator: \[ (5)^2 - (2\sqrt{3})^2 = 25 - 12 = 13 \] **Step 4:** Combine the results: \[ \frac{37 + 20\sqrt{3}}{13} = \frac{37}{13} + \frac{20\sqrt{3}}{13} \] **Step 5:** Compare with \( a + b\sqrt{3} \): \[ a + b\sqrt{3} = \frac{37}{13} + \frac{20}{13}\sqrt{3} \] Thus, \( a = \frac{37}{13} \) and \( b = \frac{20}{13} \). ### Final Answers: - For part (i): \( a = 2 \), \( b = 1 \) - For part (ii): \( a = \frac{37}{13} \), \( b = \frac{20}{13} \)

To solve the given equations step by step, we will find the values of \( a \) and \( b \) for both parts of the question. ### Part (i): We need to find \( a \) and \( b \) such that: \[ \frac{\sqrt{3} + 1}{\sqrt{3} - 1} = a + b\sqrt{3} \] ...
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Problems From NCERT/exemplar|7 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 1a|5 Videos
  • LINES AND ANGLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (long Answer Questions )|6 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|16 Videos

Similar Questions

Explore conceptually related problems

Find the values of a and b in each of the (2+sqrt(3))/(2-sqrt(3))= a+ bsqrt(3)

Find the value of a and b in each of the following (i)(3+sqrt(2))/(3-sqrt(2))=a+bsqrt(2)" "(ii)(sqrt(2)+1)/(sqrt(2)-1)=a-bsqrt(2)" "(iii)(5+4sqrt(3))/(5-4sqrt(3))=a-bsqrt(3)

Find the values of a and b if : (2sqrt(3)+3sqrt(2))/(2sqrt(3)-3sqrt(2))=a+bsqrt(6)

In each of the following determine rational number a\ a n d\ b : (i) (sqrt(3)-1)/(sqrt(3)+1)=a-bsqrt(3) (ii) (4+\ sqrt(2))/(2+sqrt(2))=a-sqrt(b)

Find the values of a and b in each of the (5+3sqrt(2))/(5-3sqrt(2))= a+b sqrt(2)

Find the values of a and b in each of the (3)/(sqrt(3)-sqrt(2))= a sqrt(3)-bsqrt(2)

Find the values of a and b in each of the following : (a)(5+2sqrt3)/(7+4sqrt(3))=a-6sqrt(3)" "(b)(3-sqrt(5))/(3+2sqrt(5))=asqrt(5)-(19)/(11) (c )(sqrt(2)+sqrt(3))/(3sqrt2-2sqrt(3))=2-bsqrt(6)" "(d)(7+sqrt(5))/(7-sqrt(5))-(7-sqrt(5))/(7+sqrt(5))=a+(7)/(11)sqrt(5b)

Find the value of m and n : if : ( 5+ 2sqrt3)/( 7+ 4sqrt3) = m + n sqrt3

In each of the following determine rational number a\ a n d\ b : (i)\ (3+sqrt(2))/(3-sqrt(2))=a+bsqrt(2) (ii)\ (5+3sqrt(3))/(7+4sqrt(3))=a+bsqrt(3)

Find the square of : (i) (3sqrt(5))/5" (ii) "3+2sqrt(5)