Home
Class 9
MATHS
Find the value of: 1/(1+sqrt2)+1/(sqrt2+...

Find the value of: `1/(1+sqrt2)+1/(sqrt2+sqrt3)+1/(sqrt3+sqrt4)+...1/(sqrt99+sqrt100)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ S = \frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \ldots + \frac{1}{\sqrt{99}+\sqrt{100}} \] ### Step 1: Rationalize Each Term We start with the first term: \[ \frac{1}{1+\sqrt{2}} \] To rationalize the denominator, we multiply the numerator and denominator by \(1 - \sqrt{2}\): \[ \frac{1 - \sqrt{2}}{(1+\sqrt{2})(1-\sqrt{2})} = \frac{1 - \sqrt{2}}{1 - 2} = \frac{1 - \sqrt{2}}{-1} = \sqrt{2} - 1 \] ### Step 2: Continue Rationalizing Subsequent Terms Next, we rationalize the second term: \[ \frac{1}{\sqrt{2}+\sqrt{3}} \] Again, we multiply by \(\sqrt{2} - \sqrt{3}\): \[ \frac{\sqrt{2} - \sqrt{3}}{(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})} = \frac{\sqrt{2} - \sqrt{3}}{2 - 3} = \frac{\sqrt{2} - \sqrt{3}}{-1} = \sqrt{3} - \sqrt{2} \] ### Step 3: Continue This Process Continuing this process for the next terms, we find: - For \(\frac{1}{\sqrt{3}+\sqrt{4}}\): \[ \frac{1}{\sqrt{3}+\sqrt{4}} = \sqrt{4} - \sqrt{3} = 2 - \sqrt{3} \] - For \(\frac{1}{\sqrt{4}+\sqrt{5}}\): \[ \frac{1}{\sqrt{4}+\sqrt{5}} = \sqrt{5} - 2 \] And so on, until we reach the last term: \[ \frac{1}{\sqrt{99}+\sqrt{100}} = \sqrt{100} - \sqrt{99} = 10 - \sqrt{99} \] ### Step 4: Combine All Terms Now, we can write the entire sum: \[ S = (\sqrt{2} - 1) + (\sqrt{3} - \sqrt{2}) + (2 - \sqrt{3}) + (\sqrt{4} - 2) + \ldots + (10 - \sqrt{99}) \] ### Step 5: Observe Cancellation Notice that in this sum, all intermediate terms cancel out: - \(-1\) from the first term remains. - The \(\sqrt{2}\) from the first term cancels with the \(-\sqrt{2}\) from the second term. - The \(\sqrt{3}\) cancels with the \(-\sqrt{3}\), and so on. This leads to: \[ S = 10 - 1 = 9 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{9} \]

To solve the problem, we need to find the value of the expression: \[ S = \frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \ldots + \frac{1}{\sqrt{99}+\sqrt{100}} \] ### Step 1: Rationalize Each Term ...
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Problems From NCERT/exemplar|7 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 1a|5 Videos
  • LINES AND ANGLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (long Answer Questions )|6 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|16 Videos

Similar Questions

Explore conceptually related problems

1/(sqrt3 + sqrt2) + 1/(sqrt3 -sqrt2)=

4.Find the value of "1/(sqrt5+sqrt2)

1.Find the value of "1/((sqrt4-sqrt3))

Simplify: 1/(sqrt5 + sqrt4) + 1/(sqrt4 + sqrt3) + 1/(sqrt3 + sqrt2) + 1/(sqrt2 + sqrt1)

Prove that: 1/(1+sqrt(2))+1/(sqrt(2)+sqrt(3))+1/(sqrt(3)+\ sqrt(4))+1/(sqrt(4)+sqrt(5))+1/(sqrt(5)+sqrt(6))+1/(sqrt(6)+sqrt(7))+\ 1/(sqrt(7)+sqrt(8))+1/(sqrt(8)+sqrt(9))=2

If sqrt(3) = 1.73 find the value of : (2+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+sqrt(3))+(sqrt(3)-1)/(sqrt(3)+1)-(sqrt(3)+1)/(sqrt(3)-1) .

Find the value of tan^(-1) sqrt3 - cot^(-1) (-sqrt3)

Simplify P=1/(2sqrt(1)+sqrt(2))+1/(3sqrt(2)+2sqrt(3))+....+1/(100sqrt99+99sqrt100

Find the sum (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+.......... upto 99 terms.

The sum of (1)/( 2sqrt1+1 sqrt2 ) + (1)/( 3 sqrt2 + 2 sqrt3 ) + (1)/( 4 sqrt3 + 3 sqrt4 ) +...+(1)/( 25 sqrt 24 + 24 sqrt25) is