Home
Class 9
MATHS
Compare the surds (i) A=sqrt(10)-sqrt(...

Compare the surds
(i) `A=sqrt(10)-sqrt(5),B=sqrt(19)-sqrt(14)`
(ii) `P=sqrt(10)+sqrt(5),Q=sqrt(8)+sqrt(7)`

Text Solution

AI Generated Solution

The correct Answer is:
To compare the surds given in the question, we will follow a systematic approach. ### Part (i): Compare A and B 1. **Define A and B**: - Let \( A = \sqrt{10} - \sqrt{5} \) - Let \( B = \sqrt{19} - \sqrt{14} \) 2. **Square A and B**: - Calculate \( A^2 \): \[ A^2 = (\sqrt{10} - \sqrt{5})^2 = 10 + 5 - 2\sqrt{10 \cdot 5} = 15 - 2\sqrt{50} \] - Calculate \( B^2 \): \[ B^2 = (\sqrt{19} - \sqrt{14})^2 = 19 + 14 - 2\sqrt{19 \cdot 14} = 33 - 2\sqrt{266} \] 3. **Compare \( A^2 \) and \( B^2 \)**: - We need to compare \( 15 - 2\sqrt{50} \) and \( 33 - 2\sqrt{266} \). - Rearranging gives us: \[ A^2 < B^2 \text{ if } 15 - 2\sqrt{50} < 33 - 2\sqrt{266} \] - Simplifying this leads to: \[ -2\sqrt{50} < 18 - 2\sqrt{266} \] \[ 2\sqrt{266} - 2\sqrt{50} > 18 \] \[ \sqrt{266} - \sqrt{50} > 9 \] 4. **Calculate \( \sqrt{266} \) and \( \sqrt{50} \)**: - Approximate values: \[ \sqrt{266} \approx 16.31 \quad \text{and} \quad \sqrt{50} \approx 7.07 \] - Thus: \[ 16.31 - 7.07 \approx 9.24 > 9 \] 5. **Conclusion for Part (i)**: - Since \( A^2 < B^2 \), we conclude that \( A < B \). ### Part (ii): Compare P and Q 1. **Define P and Q**: - Let \( P = \sqrt{10} + \sqrt{5} \) - Let \( Q = \sqrt{8} + \sqrt{7} \) 2. **Square P and Q**: - Calculate \( P^2 \): \[ P^2 = (\sqrt{10} + \sqrt{5})^2 = 10 + 5 + 2\sqrt{10 \cdot 5} = 15 + 2\sqrt{50} \] - Calculate \( Q^2 \): \[ Q^2 = (\sqrt{8} + \sqrt{7})^2 = 8 + 7 + 2\sqrt{8 \cdot 7} = 15 + 2\sqrt{56} \] 3. **Compare \( P^2 \) and \( Q^2 \)**: - We need to compare \( 15 + 2\sqrt{50} \) and \( 15 + 2\sqrt{56} \). - Since both have the same constant term (15), we compare the square root terms: \[ 2\sqrt{50} < 2\sqrt{56} \] - Dividing by 2 gives: \[ \sqrt{50} < \sqrt{56} \] 4. **Conclusion for Part (ii)**: - Since \( P^2 < Q^2 \), we conclude that \( P < Q \). ### Final Results: - For part (i): \( B > A \) - For part (ii): \( Q > P \)

To compare the surds given in the question, we will follow a systematic approach. ### Part (i): Compare A and B 1. **Define A and B**: - Let \( A = \sqrt{10} - \sqrt{5} \) - Let \( B = \sqrt{19} - \sqrt{14} \) ...
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Problems From NCERT/exemplar|7 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 1a|5 Videos
  • LINES AND ANGLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (long Answer Questions )|6 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|16 Videos

Similar Questions

Explore conceptually related problems

(sqrt(6+2sqrt(5)))(sqrt(6-2sqrt(5)))

3sqrt(2^(5))sqrt(4^(9))sqrt(8)=

2sqrt5 - sqrt5 = sqrt5

Simplify the following expressions: (i) (11+sqrt(11))(11-sqrt(11)) (ii) (5+sqrt(7))(5-sqrt(7)) (iii) (sqrt(8)-sqrt(2))(sqrt(8)+sqrt(2)) (iv) (sqrt(7)-3)(sqrt(7)+3)

Simplify each of the following : (i)(sqrt(2)+1)/(sqrt(2)-1)+(sqrt(2)-1)/(sqrt(2)+1)" "(ii)(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))+(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))" "(iii)(2)/(sqrt(5)+sqrt(3))+(1)/(sqrt(3)+sqrt(2))-(3)/(sqrt(5)+sqrt(2))" "(iv)(sqrt(7)+sqrt(5))/(sqrt(7)-sqrt(5))-(sqrt(7)-sqrt(5))/(sqrt(7)+sqrt(5))

Rationalise the denominator and simplify: (i) (4sqrt(3)+5sqrt(2))/(sqrt(48)+\ sqrt(18)) (ii) (2sqrt(3)-\ sqrt(5))/(2\ sqrt(2)+\ 3sqrt(3))

(1)/(2sqrt(5)-sqrt(3))-(2sqrt(5)+sqrt(3))/(2sqrt(5)+sqrt(3)) =

Simplify : (i) (sqrt(5)+sqrt(2))^2 (ii) (sqrt(11)-sqrt(5))^2

Simplify : (i) (sqrt(5)+sqrt(2))^2 (ii) (sqrt(11)-sqrt(5))^2

Simplify the following expressions. (i) (5+sqrt(7))(2+sqrt(5)) (ii) (5+sqrt(5))(5-sqrt(5)) (iii) (sqrt(3)+sqrt(7))^2 (iv) (sqrt(11)-sqrt(7))(sqrt(11)+sqrt(7))