Home
Class 9
MATHS
If x=1/(2-sqrt(3)), find the value of x^...

If `x=1/(2-sqrt(3)),` find the value of `x^3-2x^2-7x+5`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( x^3 - 2x^2 - 7x + 5 \) given that \( x = \frac{1}{2 - \sqrt{3}} \), we will follow these steps: ### Step 1: Rationalize the denominator We start with: \[ x = \frac{1}{2 - \sqrt{3}} \] To rationalize the denominator, we multiply the numerator and denominator by the conjugate of the denominator \( 2 + \sqrt{3} \): \[ x = \frac{1 \cdot (2 + \sqrt{3})}{(2 - \sqrt{3})(2 + \sqrt{3})} \] ### Step 2: Simplify the denominator Using the difference of squares: \[ (2 - \sqrt{3})(2 + \sqrt{3}) = 2^2 - (\sqrt{3})^2 = 4 - 3 = 1 \] Thus, we have: \[ x = 2 + \sqrt{3} \] ### Step 3: Find \( x^2 \) Now, we calculate \( x^2 \): \[ x^2 = (2 + \sqrt{3})^2 = 2^2 + 2 \cdot 2 \cdot \sqrt{3} + (\sqrt{3})^2 = 4 + 4\sqrt{3} + 3 = 7 + 4\sqrt{3} \] ### Step 4: Find \( x^3 \) Next, we calculate \( x^3 \): \[ x^3 = (2 + \sqrt{3})(7 + 4\sqrt{3}) = 2 \cdot 7 + 2 \cdot 4\sqrt{3} + \sqrt{3} \cdot 7 + \sqrt{3} \cdot 4\sqrt{3} \] Calculating each term: \[ = 14 + 8\sqrt{3} + 7\sqrt{3} + 12 = 26 + 15\sqrt{3} \] ### Step 5: Substitute into the expression Now we substitute \( x^3 \), \( x^2 \), and \( x \) into the expression \( x^3 - 2x^2 - 7x + 5 \): \[ x^3 - 2x^2 - 7x + 5 = (26 + 15\sqrt{3}) - 2(7 + 4\sqrt{3}) - 7(2 + \sqrt{3}) + 5 \] ### Step 6: Simplify the expression Calculating \( -2x^2 \): \[ -2(7 + 4\sqrt{3}) = -14 - 8\sqrt{3} \] Calculating \( -7x \): \[ -7(2 + \sqrt{3}) = -14 - 7\sqrt{3} \] Now substituting: \[ = (26 + 15\sqrt{3}) - (14 + 8\sqrt{3}) - (14 + 7\sqrt{3}) + 5 \] Combining like terms: \[ = 26 - 14 - 14 + 5 + (15\sqrt{3} - 8\sqrt{3} - 7\sqrt{3}) = 3 + 0\sqrt{3} = 3 \] ### Final Answer The value of \( x^3 - 2x^2 - 7x + 5 \) is: \[ \boxed{3} \]

To find the value of \( x^3 - 2x^2 - 7x + 5 \) given that \( x = \frac{1}{2 - \sqrt{3}} \), we will follow these steps: ### Step 1: Rationalize the denominator We start with: \[ x = \frac{1}{2 - \sqrt{3}} \] To rationalize the denominator, we multiply the numerator and denominator by the conjugate of the denominator \( 2 + \sqrt{3} \): ...
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Problems From NCERT/exemplar|7 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 1a|5 Videos
  • LINES AND ANGLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (long Answer Questions )|6 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|16 Videos

Similar Questions

Explore conceptually related problems

If x=1-sqrt(2) , find the value of (x-1/x)^3

If x=(sqrt(3)+1)/2, find the value of 4x^3+2x^2-8x+7.

If x=1-sqrt(2), find the value of (x-1/x)^3

If x=2+\ sqrt(3), find the value of x+1/x

If x-1/x=3+2sqrt(2) , find the value of x^3-1/(x^3)

If x=sqrt(3) find the value of 2x^2-8x+7.

If x = 2 - sqrt 3 , find the value of (x-1/x)^3

If x-1/x=3+2sqrt(2) , find the value of x^3-\ 1/(x^3)

If x =1 -sqrt(2) find the value of (x-(1)/(x))^(3)

If x=2+sqrt(3) , then find the value of x^(4)-4x^(3)+x^(2)+x+1 .