Home
Class 9
MATHS
a=9-4sqrt(5) ,sqrt(a)-1/sqrt(a)=?...

`a=9-4sqrt(5)` ,`sqrt(a)-1/sqrt(a)=?`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( a = 9 - 4\sqrt{5} \) and we need to find \( \sqrt{a} - \frac{1}{\sqrt{a}} \), we can follow these steps: ### Step 1: Rewrite \( a \) We start with the expression for \( a \): \[ a = 9 - 4\sqrt{5} \] We can express 9 as \( 5 + 4 \) to help us factor the expression: \[ a = (5 + 4) - 4\sqrt{5} \] ### Step 2: Rearrange to form a perfect square Next, we can rearrange \( a \) to form a perfect square: \[ a = \sqrt{5}^2 + 4 - 4\sqrt{5} \] This can be rewritten as: \[ a = (\sqrt{5} - 2)^2 \] ### Step 3: Find \( \sqrt{a} \) Now, we take the square root of \( a \): \[ \sqrt{a} = \sqrt{(\sqrt{5} - 2)^2} = \sqrt{5} - 2 \] ### Step 4: Substitute into the expression Now we substitute \( \sqrt{a} \) into the expression \( \sqrt{a} - \frac{1}{\sqrt{a}} \): \[ \sqrt{a} - \frac{1}{\sqrt{a}} = (\sqrt{5} - 2) - \frac{1}{\sqrt{5} - 2} \] ### Step 5: Rationalize the denominator To simplify \( \frac{1}{\sqrt{5} - 2} \), we multiply the numerator and denominator by the conjugate \( \sqrt{5} + 2 \): \[ \frac{1}{\sqrt{5} - 2} \cdot \frac{\sqrt{5} + 2}{\sqrt{5} + 2} = \frac{\sqrt{5} + 2}{(\sqrt{5})^2 - 2^2} = \frac{\sqrt{5} + 2}{5 - 4} = \sqrt{5} + 2 \] ### Step 6: Combine the terms Now we can combine the terms: \[ \sqrt{a} - \frac{1}{\sqrt{a}} = (\sqrt{5} - 2) - (\sqrt{5} + 2) \] This simplifies to: \[ \sqrt{a} - \frac{1}{\sqrt{a}} = \sqrt{5} - 2 - \sqrt{5} - 2 = -4 \] ### Final Answer Thus, the final result is: \[ \sqrt{a} - \frac{1}{\sqrt{a}} = -4 \]

To solve the problem where \( a = 9 - 4\sqrt{5} \) and we need to find \( \sqrt{a} - \frac{1}{\sqrt{a}} \), we can follow these steps: ### Step 1: Rewrite \( a \) We start with the expression for \( a \): \[ a = 9 - 4\sqrt{5} \] We can express 9 as \( 5 + 4 \) to help us factor the expression: ...
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Problems From NCERT/exemplar|7 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 1a|5 Videos
  • LINES AND ANGLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (long Answer Questions )|6 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|16 Videos

Similar Questions

Explore conceptually related problems

3sqrt(2^(5))sqrt(4^(9))sqrt(8)=

If x=(sqrt(5)+\ sqrt(3))/(sqrt(5)-\ sqrt(3)) and y=(sqrt(5)-\ sqrt(3))/(sqrt(5)+\ sqrt(3)) , then x+y+x y= (a) 9 (b) 5 (c) 17 (d) 7

Simplify each of the following : (i) 3/(5-sqrt(3))+2/(5+sqrt(3)) (ii) (4+sqrt(5))/(4-sqrt(5))+(4-sqrt(5))/(4+sqrt(5)) (iii) (sqrt(5)-2)/(sqrt(5)+2)-(sqrt(5)+2)/(sqrt(5)-2)

Simplify: (4+\ sqrt(5))/(4-sqrt(5))+(4-\ sqrt(5))/(4+\ sqrt(5))

Evalutate : (4-sqrt(5))/(4+sqrt(5))+ (4+sqrt(5))/(4-sqrt(5))

Prove that: 1/(3-sqrt(8))-1/(sqrt(8)-\ sqrt(7))+1/(sqrt(7)-\ sqrt(6))-1/(sqrt(6)-\ sqrt(5))+1/(sqrt(5)-2)=5

Show that: 1/(3-sqrt(8))-1/(sqrt(8)-sqrt(7))+1/(sqrt(7)-sqrt(6))-1/(sqrt(6)-sqrt(5))+1/(sqrt(5)-2)=5

Simplify: 2/(sqrt(5)+\ sqrt(3))+1/(sqrt(3)+\ sqrt(2))-3/(sqrt(5)+\ sqrt(2))

((4 +sqrt5)/(4-sqrt5)) +((4-sqrt5)/(4+sqrt5)) =?

sqrt(21-4sqrt5+8sqrt3-4sqrt12)=