Home
Class 9
MATHS
Evaluate : 2.bar(7)+1.bar(3)...

Evaluate :
`2.bar(7)+1.bar(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( 2.\overline{7} + 1.\overline{3} \), we will follow these steps: ### Step 1: Define \( 2.\overline{7} \) as a variable Let \( x = 2.\overline{7} \). This means: \[ x = 2.77777\ldots \] ### Step 2: Multiply \( x \) by 10 To eliminate the repeating decimal, multiply both sides by 10: \[ 10x = 27.77777\ldots \] ### Step 3: Set up the subtraction Now, subtract the original equation from this new equation: \[ 10x - x = 27.77777\ldots - 2.77777\ldots \] This simplifies to: \[ 9x = 25 \] ### Step 4: Solve for \( x \) Now, divide both sides by 9: \[ x = \frac{25}{9} \] Thus, \( 2.\overline{7} = \frac{25}{9} \). ### Step 5: Define \( 1.\overline{3} \) as another variable Let \( y = 1.\overline{3} \). This means: \[ y = 1.33333\ldots \] ### Step 6: Multiply \( y \) by 10 Again, multiply both sides by 10: \[ 10y = 13.33333\ldots \] ### Step 7: Set up the subtraction Now, subtract the original equation from this new equation: \[ 10y - y = 13.33333\ldots - 1.33333\ldots \] This simplifies to: \[ 9y = 12 \] ### Step 8: Solve for \( y \) Now, divide both sides by 9: \[ y = \frac{12}{9} = \frac{4}{3} \] Thus, \( 1.\overline{3} = \frac{4}{3} \). ### Step 9: Add the two results Now we can add the two fractions: \[ 2.\overline{7} + 1.\overline{3} = \frac{25}{9} + \frac{4}{3} \] ### Step 10: Find a common denominator The common denominator for 9 and 3 is 9. Rewrite \( \frac{4}{3} \) with a denominator of 9: \[ \frac{4}{3} = \frac{4 \times 3}{3 \times 3} = \frac{12}{9} \] ### Step 11: Add the fractions Now, add the two fractions: \[ \frac{25}{9} + \frac{12}{9} = \frac{25 + 12}{9} = \frac{37}{9} \] ### Final Answer Thus, the value of \( 2.\overline{7} + 1.\overline{3} \) is: \[ \frac{37}{9} \] ---

To evaluate the expression \( 2.\overline{7} + 1.\overline{3} \), we will follow these steps: ### Step 1: Define \( 2.\overline{7} \) as a variable Let \( x = 2.\overline{7} \). This means: \[ x = 2.77777\ldots \] ### Step 2: Multiply \( x \) by 10 To eliminate the repeating decimal, multiply both sides by 10: ...
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 1c|20 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 1d|7 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 1a|5 Videos
  • LINES AND ANGLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (long Answer Questions )|6 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|16 Videos

Similar Questions

Explore conceptually related problems

Evaluate : 2.bar(5)-0.bar(35)

Evaluate : 1.bar(45)+0.bar(3)

Evaluate 3.bar(2)-0.bar(16)

Evaluate : (a) 0.9bar7 (b) 0.2345

Express each of the following recurring decimals into the rational number : (i)0.bar(7)" "(ii)0.bar(6)" "(iii)1.bar(3)" "(iv)3.bar(8)

In Delta YVW in Figure, bar(VX) is the altitude to side bar(YW) , and bar(ZW) is the altitude to side bar(YV) . If bar(VX)=3, bar(YV)=4 , and bar(ZW)=5 , what is the length of side bar(YW) ?

Represent the following as rational numbers : (i) 0.bar43 (ii) 0.4bar3 (iii) 24.28bar(137)

Express each of the following as a fraction in simplest form : (i) 0.bar(5) (ii) 1.bar(4) (iii) 0.bar(15)

Express each of the following recurring decimals into the rational number : (i)0.bar(5)" "(ii)2.bar(4)" "(iii)1.bar(12)" "(iv)2.7bar(39)" "(v)0.bar(516)" "(vi)3.7bar(148)

If the midpoint of the sides bar(BC), bar(CA), bar(AB) of DeltaABC are (3, -3), (3, -1), (1, 1) respectively then the vertices A, B, C are