Home
Class 9
MATHS
Simiplify : (16xx2^(n+1)-4xx2^(n))/(16...

Simiplify :
`(16xx2^(n+1)-4xx2^(n))/(16xx2^(n+2)-2xx2^(n+1))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((16 \times 2^{(n+1)} - 4 \times 2^{n}) / (16 \times 2^{(n+2)} - 2 \times 2^{(n+1)})\), we can follow these steps: ### Step 1: Rewrite the expression We start with the original expression: \[ \frac{16 \times 2^{(n+1)} - 4 \times 2^{n}}{16 \times 2^{(n+2)} - 2 \times 2^{(n+1)}} \] ### Step 2: Factor out common terms In the numerator, we can factor out \(2^{n}\): \[ = \frac{2^{n}(16 \times 2 - 4)}{16 \times 2^{(n+2)} - 2 \times 2^{(n+1)}} \] In the denominator, we can factor out \(2^{(n+1)}\): \[ = \frac{2^{n}(16 \times 2 - 4)}{2^{(n+1)}(16 \times 2 - 2)} \] ### Step 3: Simplify the expression Now, we can simplify the expression: \[ = \frac{2^{n}(32 - 4)}{2^{(n+1)}(32 - 2)} \] This simplifies to: \[ = \frac{2^{n} \times 28}{2^{(n+1)} \times 30} \] ### Step 4: Cancel out the common terms We can cancel \(2^{n}\) in the numerator and denominator: \[ = \frac{28}{2 \times 30} \] This simplifies further to: \[ = \frac{28}{60} \] ### Step 5: Reduce the fraction Now, we can reduce \(\frac{28}{60}\) by dividing both the numerator and denominator by 4: \[ = \frac{7}{15} \] ### Final Answer Thus, the simplified expression is: \[ \frac{7}{15} \]

To simplify the expression \((16 \times 2^{(n+1)} - 4 \times 2^{n}) / (16 \times 2^{(n+2)} - 2 \times 2^{(n+1)})\), we can follow these steps: ### Step 1: Rewrite the expression We start with the original expression: \[ \frac{16 \times 2^{(n+1)} - 4 \times 2^{n}}{16 \times 2^{(n+2)} - 2 \times 2^{(n+1)}} \] ...
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 1e|18 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (very Shortanswer Questions)|10 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 1c|20 Videos
  • LINES AND ANGLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (long Answer Questions )|6 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|16 Videos

Similar Questions

Explore conceptually related problems

Simplify: (i) (3^5)^(11)xx(3^(15))^4-(3^5)^(18)xx(3^5)^5 , (ii) (16xx2^(n+1)-4xx2^n)/(16xx2^(n+2)-2xx2^(n+2))

Simplify : (8^(3a)xx2^(5)xx2^(2a))/(8xx3^(3n)-5xx27^(n))

Simplify each of the following: (a)\ (7^n-3\ xx\ 7^(n+1))/(20\ xx\ 7^n-2\ xx\ 7^n) (b)\ (5^n-6\ xx\ 5^(n+1))/(9\ xx\ 5^n-2^2xx\ 5^n) (c)\ (16\ xx\ 2^(n+1)-4\ xx\ 2^n)/(16\ xx\ 2^(n+2)-2\ xx\ 2^(n+2))

Simplify: (i) (10xx5^(n+1)+25xx5^n)/(3xx5^(n+2)+10xx5^(n+1)) (ii) ((16)^7xx(25)^5xx(81)^3)/((15)^7xx(24)^5xx(80)^3)

Simplify : (3xx9^(n+1)-9xx3^(2n))/(3xx3^(2n+3)-9^(n+1))

Simplify : (5^(n+3)-6xx5^(n+1))/(9xx5^(n)-5^(n)xx2^(2))

Simplify : (5^(n+3)-6xx5^(n+1))/(9xx5^(n)-5^(n)xx2^(2))

Simplify : (5^(n+4)-6xx5^(n+2))/(9xx5^(n+1)-5^(n+1)xx4)

Find the value of n : (2^(3)xx5^(n+1)xx10^(2)xx5^(n-1))/(125xx5^(n-2)xx2^(7))=(25)/(4)

Find the value of n, given : (2xx4^(3)xx2^(n-4)xx3xx2^(n+2))/(3^(3)xx2^(16))=(2)/(9)