Home
Class 9
MATHS
Simplify : (5^(n+4)-6xx5^(n+2))/(9xx5...

Simplify :
`(5^(n+4)-6xx5^(n+2))/(9xx5^(n+1)-5^(n+1)xx4)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((5^{n+4} - 6 \times 5^{n+2}) / (9 \times 5^{n+1} - 4 \times 5^{n+1})\), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \frac{5^{n+4} - 6 \times 5^{n+2}}{9 \times 5^{n+1} - 4 \times 5^{n+1}} \] ### Step 2: Factor out common terms in the numerator In the numerator, we can factor out \(5^{n+2}\): \[ 5^{n+4} = 5^{n+2} \times 5^2 = 5^{n+2} \times 25 \] So, we can rewrite the numerator as: \[ 5^{n+2}(25 - 6) \] Thus, the numerator becomes: \[ 5^{n+2}(19) \] ### Step 3: Factor out common terms in the denominator In the denominator, we can factor out \(5^{n+1}\): \[ 9 \times 5^{n+1} - 4 \times 5^{n+1} = (9 - 4) \times 5^{n+1} \] So, the denominator becomes: \[ 5^{n+1}(5) \] ### Step 4: Substitute back into the expression Now we can substitute the factored forms back into the expression: \[ \frac{5^{n+2} \times 19}{5^{n+1} \times 5} \] ### Step 5: Simplify the expression Next, we can simplify the expression by canceling out \(5^{n+1}\) from the numerator and denominator: \[ \frac{5^{n+2}}{5^{n+1}} = 5^{(n+2)-(n+1)} = 5^1 = 5 \] Thus, we have: \[ \frac{19 \times 5}{5} = 19 \] ### Final Answer The simplified value of the expression is: \[ \boxed{19} \]

To simplify the expression \((5^{n+4} - 6 \times 5^{n+2}) / (9 \times 5^{n+1} - 4 \times 5^{n+1})\), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \frac{5^{n+4} - 6 \times 5^{n+2}}{9 \times 5^{n+1} - 4 \times 5^{n+1}} \] ...
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 1e|18 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (very Shortanswer Questions)|10 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 1c|20 Videos
  • LINES AND ANGLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (long Answer Questions )|6 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|16 Videos

Similar Questions

Explore conceptually related problems

Simplify : (5^(n+3)-6xx5^(n+1))/(9xx5^(n)-5^(n)xx2^(2))

Simplify : (5^(n+3)-6xx5^(n+1))/(9xx5^(n)-5^(n)xx2^(2))

Simplify : (3xx9^(n+1)-9xx3^(2n))/(3xx3^(2n+3)-9^(n+1))

Simplify : (3xx27^(n+1)+9xx3^(3n-1))/(8xx3^(3n)-5xx27^(n))

Simplify : (8^(3a)xx2^(5)xx2^(2a))/(8xx3^(3n)-5xx27^(n))

Simiplify : (16xx2^(n+1)-4xx2^(n))/(16xx2^(n+2)-2xx2^(n+1))

Simplify: (i) (10xx5^(n+1)+25xx5^n)/(3xx5^(n+2)+10xx5^(n+1)) (ii) ((16)^7xx(25)^5xx(81)^3)/((15)^7xx(24)^5xx(80)^3)

Simplify : (-5\ xx2/(15))(6\ xx2/9)

Simplify : ( 16 xx 10 ^(4) xx 3^(3))/( 6^(5) xx 5^(6))

Simplify : ((-9)/4xx5/3)+\ ((13)/2xx5/6)